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Summary. This paper examines the dynamic behavior of optimal consumption and 

investment policies in the aggregate stochastic growth model when utility depends 
on both consumption and the stock level. Such models arise in the study of 

renewable resources, monetary growth, and growth with public capital. The paper 
shows that there is a global convergence of optimal policies to a unique stationary 
distribution if (a) there is sufficient complementarity in the model, or (b) if there is 

sufficient randomness in production. Two examples illustrate the possibility of 

multiple stationary distributions. In one, multiple stochastic steady states exist for 
a generic class of production and utility functions. 

1. Introduction and preliminaries 

The optimal growth model when utility depends on both consumption and the stock 

level has proved useful for analyzing a variety of important economic problems 
related to renewable resources, monetary growth, and growth with public capital. 

This paper investigates the long run behavior of optimal consumption and 

investment processes for such problems when production is stochastic. The results 

extend Nyarko and Olson [1991] and provide conditions on technology and 

preferences that are sufficient to guarantee the global convergence of optimal 

consumption and investment to a unique stationary distribution. This question is 

non-trivial since Kurz [1968] has shown that multiple optimal steady states can 

exist when utility depends on both consumption and the stock.1 

* We thank Professors Jess Benhabib and R. Robert Russell for helpful discussions and 2 referees for 

constructive suggestions. 
1 
Majumdar [1982] and Majumdar and Mitra [1991] consider a deterministic version of the problem, 

while Brock and Mirman [1972] and Mirman and Zilcha [1975,1977] examine the stochastic case where 

utility depends solely on consumption. Mendelssohn and Sobel [1980] examine the problem of 

convergence in a model similar to ours, but their results follow from assumptions imposed directly on 

the Markov transition kernel that governs the evolution of optimal resource stocks. In somewhat related 

work, Mirman and Spulber [1984] examine a renewable resource model that assumes uniqueness of the 
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We show that there exists a unique stationary distribution when the utility 
function exhibits (i) complementarity between consumption, investment, and 

output, and (ii) a form of balanced growth complementarity. Examples are given to 

illustrate the existence of multiple stochastic steady states when the sufficient 

conditions are violated. We also show that a model with multiple optimal stationary 
distributions can be transformed into a globally convergent model simply by 

introducing sufficient randomness into production. This suggests that highly 
variable economies may be less subject to dependence on initial conditions than 

economies with small productivity shocks. Proofs are relegated to the end of the 

paper. 

The model used in this paper is essentially that developed in Nyarko and Olson 

[1991]. A brief description is given here, and the reader is referred to that paper 
for more details. The resource stock, consumption, and investment are denoted by 
yt, ct, and xt, respectively, where xt = yt 

? 
ct. Growth in the resource stock is 

governed by the production function, yt+1 =f{xt, rt+l), where rt is an i.i.d. stochastic 

process with (common) probability measure y. The utility of an agent depends on 

both the resource stock and consumption, and is denoted by Uict,yt). Given an 

initial stock y0 > 0, the agent maximizes the discounted sum of utility over time, 
where ?e(0,1) is the discount factor. The production and utility functions are 

assumed to satisfy the following restrictions throughout the paper. 

T. 1. For all r, fix, r) is strictly increasing in x. 

T.2. / is concave in x. 

T.3. For all r, /(0, r) 
= 0 while fix, r) > 0 if x > 0. 

T.4. The first and second derivatives of fix, r) in x exist and are continuous in (x, r). 
T.5. There exists a y such that fix, r)<x a.s. for all x > y. 
T.6. If/ is stochastic (i.e., the distribution of r is nondegenerate) then there exists 

nox>0andy>0such that y({r|/(x,r) 
= 

y}) 
= 1. 

T.7. yoei0,yl 
U. 1. Uic, y) is nondecreasing in y. 
U.2. Uic, y) is concave in (c, y). 
U.3. Uic, y) is twice continuously differentiable. 

U.4. Ucc + 
Ucy<0. 

U.5. 
Ucy>0. 

U.6. Uic, y) is strictly increasing in y and/(x, r) is strictly concave in x for each r, or 

U.6'. Uic, y) is strictly concave. 

Standard dynamic programming arguments imply the existence of stationary 

optimal consumption and investment policy functions ct = 
C*iyt) and X*iyt) 

= 

yt 
? 

C*iyt). Furthermore, the following functional equation holds: 

Viy) = Max Uic y) + b$ Vifiy 
- c, r))y(dr). 

0<c<y 

limiting distribution. In contrast, the analysis in this paper emphasizes assumptions on primitives of the 

model. For a further discussion of the related literature the reader is referred to Nyarko and Olson [1991]. 

The global convergence of optimal policies derived in this paper contrasts with the cyclic or chaotic 

behavior studied in Benhabib and Nishimura [1985], Majumdar and Mitra [1991], and Nishimura and 

Yano [ 1991 ]. These papers all utilize a deterministic framework in which our condition U.4 is violated. 
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Given the assumptions above, it is well known that V(y) is nondecreasing, concave,2 
and that the optimal policy functions are uniquely defined and continuous in y. 

Under U.4 and U.5 the optimal investment and consumption policy functions are 

strictly increasing and nondecreasing, respectively (Nyarko and Olson [1991, 
Theorems 2.3 and 2.4]). 

Let y*, c* and x* denote the optimal output, consumption, and investment, and 

let Uc and Uy denote derivatives of U with respect to c and y. It is assumed that the 

optimal consumption and investment policies are interior so that the following 
Euler equation holds:3 

V?c?,y?) 
= 

SE{lUt[c?+l,y?+,) + l/,(c*+ ? J?+ ̂IW?* ,)} 
It is important to note that utility is not necessarily monotone in c as is typical 

in renewable resource models where higher consumption levels require more effort. 

Even so, optimal consumption always occurs in a region of U that is increasing in 

c, i.e., optimal consumption is less than or equal to that which would be chosen by 
a myopic decision-maker. 

2. Uniqueness of the limiting distribution under complementarity conditions 

The convergence of optimal processes to a stationary distribution is characterized 

in Nyarko and Olson [1991, Theorem 2.5]; however, questions about the number 

of stationary distributions and whether optimal processes converge locally or 

globally are not addressed in that paper. In this section we focus on assumptions 
on the utility function that are sufficient to imply the global convergence of optimal 

processes to a unique stationary distribution from all inital resource stocks. Assume: 

U.7. There exists a y > 0 such that for all y>y9 Uc(c, y) 
= 0 implies Uy > 0, where 

0 < c < y. 
U.8. For all y > 0, 0 < c < y and X > 1 such that Uc(c, y)>0 and Uc(Xc, Xy) > 0, 

Uy(c,y)>Uy(Xc,Xy) 
Uc(c,y)-Uc(Xc,Xy) 

T.8. f(x, r) is strictly concave in x. 

Assumption U.7 is needed to rule out the possibility of U attaining a maximum 

at d and, at the same time, being independent of y at d. U.8 can be interpreted as 

a complementarity condition on the decision maker's preferences as consumption 
and output increase along a balanced growth path between c and y. 

? 
Uy/Uc is the 

slope of indifference curves of U. Hence, U.8 implies that indifference curves for U 

have decreasing slopes as the stock level and consumption increase along a ray 

through the origin in (y, c) space. Assumption U.8 is satisfied if utility is stock 

2 
If i/(c, y) is strictly concave, then this result can be strengthened to show that V(y) is also strictly 

concave. 
3 

This is true if the usual Inada conditions are imposed on U. It also imposes the implicit requirement 
that U is not everywhere decreasing in c. 
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independent so that Uy 
= 0 for all ic,y). In addition, it does not rule out the 

possibility that Uc 
= 0 for some (c, y).A One class of utility functions that satisfies all 

of our assumptions including U.7 and U.8 is the class l/(c, y) 
= 

c*y*, where 0 < a < 1, 
0 </?<!, and <x + /J<l. All our assumptions are also satisfied if utility is 

independent of the stock. 

The following definitions are used in characterizing the convergence of 

optimal processes. Let fjx) 
= 

minffix, r), /M(x) 
= 

maxr /(x, r), XJx) 
= 

X*ifmix)), 

XMix) 
= 

X*ifjx)), zm = min {x > 0\Xmix) 
= 

x}, zM = max {x > 0|XMix) 
= 

x}, xm = 

max {x > 0|XJx) 
= 

x}, xM 
= min {x > 0|XM(x) 

= 
x}. In addition, let ym =/m(xOT) 

and yM 
= 

fM{xM). A unique stationary distribution exists if xm < xM. If xm > xM, 
there are at least two stationary distributions and there may exist many stationary 
distributions in the interval (xm,xM) (see Nyarko and Olson [1991] for a further 

discussion). 
To avoid troublesome anomalies we assume: 

T.9. There exists a0 > 0 such that XJx) > x for all xe(0,0). 

T.9 prevents the optimal stock process from converging over time to zero even if 

the worst state occurs at each date. Sufficient conditions on the primitives of the 

model for T.9 are: 

T.9(a). limx_0 fx(x, r) 
= oo for all r (Inada condition on /). 

T.9(b). Either r is drawn from a finite set, or fix, r) is ordered in r and the minimum 

shock has positive probability. 

Define rl = 
(r1,...,rt) and for each t and r* define Ar,(x0,ri) 

= 

X*ifi..X*ifiX*if{xQ,rx)),r2)\...,rt)). Let F0 be any distribution function for x0. 

Ft is defined to be the distribution function for xt generated by the transition 

equation X\x0, rr). We now state the main result of this section. 

Theorem 1. IfU.7-U.8 and T.8-T.9 hold in addition to the assumptions of Section 1, 

then Ftix) converges uniformly in x to a unique stationary distribution, F^ix), 

independently of the initial stock y0. In addition, the support of F is a subset of 

[Xro> xMj. 

It is known that multiple steady states may exist if the production function is 

not concave (see Majumdar et al. [1989]). The two examples below show that 

multiple optimal steady states may exist if all our assumptions (including concavity 
of production) are satisfied except U.7 and U.8. 

Example 1 - Violation of U.7 leads to multiple optimal stationary distributions 

Assume the utility function is independent of y, strictly concave in c, and let Uic) 
reach a maximum at d with Uc > 0 for c < c' and Uc < 0 for c> c'. Further, let #(x) be 

any function that satisfies assumptions T. 1-T.5 and T.9(a) such that lim^ g\x) 
= 0 

4 
4.8 holds for significant classes of utility functions including the class of all homothetic utility 

functions. A larger class is the class of all utility functions homothetic to a point in the region 

Q = 
{(c, y)e9?2|c < y,c S 0}. This is a subset of the class of quasihomothetic or affine-homothetic reward 

functions (see Blackorby, Boyce, and Russell [1978]). 
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and for some x' > d, g(x') > x' + d. Fix any k > Max {x'/g(x' 
? 

d), 1}. Let f(x, r) be 

any stochastic production function obeying T. 1 -T.9(a, b) with fm(x) 
= 

minr f(x, r) 
= 

kg(x). This defines a large class of production functions. For every production 
function in this class, Nyarko and Olson [1990] prove that there are multiple 

optimal stationary distributions, provided the discount rate is sufficiently small.5 

Example 2 - Violation of U.8 leads to multiple optimal steady states 

Define U(c,y) 
= 

I6y 
- 

\/2(c 
- 

24)2. Then Uc 
= 24 - c, Uy=l6, Uyy 

= 
Ucy 

= 0, and 

Ucc= 
? 1. U is nondecreasing in y and concave, U.1-U.7 are satisfied, but 

Uy(Xc,Xy)/Uc(Xc,Xy)= 16/(24- Xc) so U.8 is violated. Assume that /(x)= 10x1/2. 

One can check that when b = 0.10, the Euler equation is satisfied when (yt, xt, ct) are 

any one of the three stationary triples (y,x,c) 
= 

(10.4695, 1.0961, 9.3734), (29.2739, 
8.5696, 20.7043), or (65.2567, 42.5843, 22.6723). Maintaining any of these three 

triples as a steady state is feasible and the transversality condition holds, so each is 
an optimal steady state.6 

3. Sufficient variability in production implies the existence 

of a unique stationary distribution 

In this section we show that even if the sufficient conditions of Section 2 fail, a model 

with a unique stationary distribution can be obtained through a sufficient 

"stretching out" of the randomness in the production function.7 

Let {/k(x,r)}??=0 be a collection production functions. Assume: 

T.10. For each k, fk(x, r) satisfies assumptions T.1-T.5 and T.9. 

T.ll. For each x > 0, lim*^ Maxr/k(x,r) 
= oo. 

T.12. For each x > 0, lim*^ Edfk(x, r)/dx 
= oo. 

T. 13. For each x > 0 and k > 0, fkm(x) 
< /? (x). 

Assumption T.l 1 implies that the production function becomes arbitrarily large 
in the best state while T.l3 ensures that in the worst state the production function 

is uniformly bounded above. This formalizes the notion of "stretching out" the 

production function. Assumption T.12 is an additional assumption that requires 
that the expected marginal product becomes arbitrarily large. To further illustrate 

the need for T.l3 consider production functions defined by fk(x, r) 
= 

kf(x, r) where 

f(x,r) obeys T.1-T.5. This class of production functions involves a simple change 
of units so the limiting behavior of optimal policies should not vary with k. Such 

classes are ruled out by T.l3. 

Theorem 2. Let {fk(x, r)}??=0 be a collection production functions satisfying T.10-T.13. 

Suppose that the utility function obeys all assumptions of section 1 (but not necessarily 

5 
This derivation is available from the authors on request. 

6 
The transversality condition is lim,^ <Wf(c*, y*)x* 

= 0. In Example 2, the transversality condition is 

satisfied since i/c(c*, y*) and x* are both constant and positive at the three steady states. 
7 

This idea is similar to the notion of "very stochastic" employed in Majumdar, Mitra, and Nyarko 

[1989]. 
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the assumptions of section 2). Then for all k sufficiently large the model with production 

function f\x, r) has a unique non-trivial stationary distribution and the conclusions of 
Theorem 1 hold. 

Theorem 2 implies that the convergence properties of models with monotone 

transition functions depend substantially on the degree of randomness in the model. 
It shows that enough variability in production forces the long run behavior of 

optimal processes to be independent of initial conditions. This suggests that the 

existence of multiple stationary distributions depends on whether the economy is 

subject to technology shocks that have large or small variation. The resolution of 

thic question is an issue for further theoretical and empirical investigation. 

4. Proofs 

The proofs of both theorems are accomplished through a series of subsidiary 
lemmas. Proofs of these lemmas are given in Nyarko and Olson [1990] and can be 

obtained from the authors on request. 

Proof of Theorem 1. Assume xm > xM. Define cm = 
C*iym) and cM 

= 
C*iyM). From 

the definition of Xm and the fact that xm is a fixed point of Xm, it follows that 

X*iym) 
= 

X*(/m(xJ) 
= 

Xmixm) 
= xm. Hence, xw and cm are optimal investment and 

consumption from ym. Similarly, xM and cM are optimal investment and consump 
tion from yM. 

Lemma 1.1. Ifxm > xM, then for all r, yM > /(xM, r), ym < /(xm, r), cM > C*(/(xM, r)), 

cm < C*ifixm, r)), and ym > yM and cm > cM. 

Lemma 1.2. Under U.7, Ucicm, ym) > 0 and t/c(cM, yM) > 0. 

Lemma 1.3. Ifxm > xM and U.7 holds, then 

VcicM,yM) Ucicm,ym) 

Lemma 1.4. xm > xM implies cjym < cM/yM. 

Lemma 1.5. Ifxm > xM and U.8 holds, then 

Vy(CM,yM)>Uy(Cm,ym) 
UcicM,yM)~~ Ucicm,ym)' 

The proof of Theorem 1 follows from the fact that Lemmas 1.3 and 1.5 contradict 

each other. Thus, it cannot be that xm > xM. // 

Proof of Theorem 2. 

Lemma 2.1. Fix any production function fix, r) that satisfies T.10. IfEf'ixM, r) > \/b 
then Uic,y) attains its global maximum at a unique c>0 and C*(/m(xM)) 

= 

C*ifMixM)) 
= c. 

Lemma 2.2. Let {/*(x,r)}??=0 be a class of production functions obeying T.10-T.13. 

Suppose further that for all k, the model with the production function f\x,r) has more 
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than one non-trivial stationary distribution. Then, a) Edfk(xkM,r)/dx > \/b for all k 

sufficiently large, where xkM is defined in a similar manner as xM for the model with 

production function fk(x, r); and b) lim*.^ xkM 
= 0. 

Now let {fk(x, r)}??=0 be a class of production functions satisfying the hypotheses 
of Lemma 2.2. From Lemmas 2.1, 2.2(a) and T.l3 it follows that for k sufficiently 

large, 0<c = 
C*(fkn(xkM))<fkm(xkM)<f^(xkM). Taking limits as k-+oo and using 

Lemma 2.2(b) then implies that 0 < c </?(0) 
= 0, which is a contradiction. // 
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