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1. Introduction

Gameswithincompl eteinformation or randomnessin the moves of otherstypically have many decision-
theoretically equivalent formulations of the type space. For example, suppose you believe that your
opponent is going to choose one of two actions with equal probability. Your beliefs could be
"formulated” in any one of the following two ways: (i) you could believe that your opponent is
randomizing with equal probability; or (ii) you could assign equal probability to your opponent being
one of two types - the type who chooses the first action (non-randomly) or the type who chooses the
second action. To players within the game, the different formulations of the game change neither their
beliefs nor their play. These different formulations are equivalent in terms of "decision-theory" since
under each beliefs about others and payoffs are unaffected. This paper will formalize this notion of
equivalence of type-reformulations, and study an axiom which requires solution concepts in games to
be independent of the formulation of the game used. We then use this formalization and the axiom to
study some of the resultsin the rational learning literature.

Among game theorists there are many who argue forcefully that people do not really use mixed
strategies - instead mixed strategies represent players conjectures. Other game theorists do not mind
theuse of mixed strategies. Thesediffering perspectivesarereally argumentsover the appropriatetype-
formulation of the game: in the former there are many types of players each choosing a pure strategy;
in the latter there may be only one type of player - one who chooses a mixed strategy.

Simple questionslike "isthe gamein aNash equilibrium?* or "do playerslearn to play aNash
equilibrium” will be impossible to answer since the answer will depend on the type-formulation under
consideration. Thisisbecause thereisno unambiguous notion of what constitutes the "truth.” Instead
it will beinthe eye of the beholder (actually, the gametheorist). Thetruetype of aplayer isambiguous
becausethat player’stype can encode different amounts of the outcomes of randomizations. How would
onego about determining what playersare"truly" doing? Sincethedifferent formulationsof true player
arenot decision-theoretically relevant, they may behhard totest ina"laboratory"” inthe same manner one
could possibly €elicit beliefs’.

For al of the above reasons, one may want to require solution concepts, assumptions or
paradoxesin gamesto beindependent of the formul ation of the game used. Thisindependence enables

'Note well that what we are claiming here has nothing to do with the Allais or other framing
paradoxes. The Allais paradox shows that two different "frames' or ways of presenting information
can lead to different behavior. Here we are considering different framesin the mind of a player that
lead to the same behavior.



oneto avoidtaking astand on mixed versuspurestrategies, or on decision-theoretically irrel evant i ssues.
| cal this axiom TIGER, for "Type-Independence among Games which are Equivalently Re-
formulated.” The message of this paper will be the following: (i) if oneisinterested in satisfying the
axiom TIGER, then one has to move away from concepts of equilibrium in strategies and move instead
toward concepts of equilibrium in beliefs or conjectures; and (ii) even if one is not interested in
satisfyingtheaxiom TIGER per se, thetype-spaceformul ationisavery important and oftenignored part
of the specification of incomplete information games.

A review of the recent literature on Bayesian learning in repeated games highlights this issue.
In therational learning literature there are two broad approaches. The papers of Jordan (1991, '95) and
later Nyarko (1994, '97b) wherethereis convergence of beliefstoa Nash or subjective equilibrium take
the first approach. The vast mgjority of the literature, however, follows the second approach and
includes Kalai and Lehrer (1993a) (henceforth KL93), Lehrer-Smorodinsky (1997), Nachbar (1997),
Sandroni (1995a,b) and many others. The second group of papersis concerned with the convergence
of true strategies to an equilibrium.

The conclusions of papers by Jordan and Nyarko, which provide results on convergence of
beliefsto an equilibrium, all obey TIGER. On the other hand, to get conditions for convergence to an
equilibrium, the KL93-type papers impose conditions which must hold for each true vector of types of
players. Because the concept of truth isambiguous, so too iswhether the KL 93 type assumptions hold
for agiven game. The KL93 assumptions may hold for one type-formulation of the game, yet fail in
another. This is despite the fact that the formulations are decision-theoretically equivalent. On the
positive side, the strength of the KL93 result isthefollowing: if the KL93 assumption holdsfor agiven
formulation of thetype-space, therewill be convergenceto an equilibrium whose meaningisdetermined
by that given formulation of the type-space. | argue simply that the type-space formulation is
ambiguous, and in particular that two reasonable game theorists can argue about what is the correct
formulation for a given game.

Thisambiguity inwhat constitutesthe"truth" isalso anissuein Nachbar (1997). Nachbar shows
that in some games a paradox may arise from an inherent inconsistency between prediction of the true
play and optimization. Asin KL93, Nachbar's definitions (in particular his definition of prediction)
requires a specification of the true strategies; it may therefore hold in one game but fail in another
equivalent one. Hence the paradox in Nachbar (1997) violates the axiom TIGER. Furthermore, aswe
shall show, if one goesfrom prediction of true strategiesto prediction of beliefs, TIGER will hold. All
thisillustratesour first message: to satisfy TIGER one should use notionsof equilibrium of beliefsrather



than of true strategies.

Regardless of your stand on whether the axiom TIGER should hold and equilibrium in beliefs
isappropriate, my second message is that the type-space formulation isimportant®. In Section 6 below
| show that for the KL93-type results to hold, the type-space formulation must be sufficiently coarse -
meaning that atype should not encode too much information. Specifically, | show that for any collection
of equivalent gameswhich arelinearly ordered intermsof their type-refinement - from coarsest to finest
- there will exist acritical game such that all coarser games obey the KL 93 type assumptions and all
finer oneswill violateit. Similar monotonicity results hold for the Nachbar paradox.

Related to the above, | prove a result which has been the subject of some controversy in
interpreting the KL93 results. Many researchers believe that the KL93 assumptions imply the
countability of the set of types- indeed, thishasalready appeared inthe published literature! Evenwhen
aplayer has only two actions in each period, the set of possible infinite-horizon plays is uncountable.
A restriction to countably many possibletypesof play isthereforeastrongone. By using theframework
of type-formulations, | am now able to answer the question as regards countability and the KL93
assumptions. The KL93 assumptions by themselves do not immediately imply countable types.
Everything, however, depends upon the type-formulation. Suppose that we are in what we refer to as
the"comprehensive" formul ation of the game, where each player-type chooses adifferent pure strategy.
Then for the KL93 assumption to hold in this formulation, the set of types must be countable.

The paper proceeds as follows: In Section 2, | provide a leading example illustrating all the
issues discussed in this paper. My call for the use of equilibrium in beliefsisnot new in the literature -
although | believe the arguments presented here for the use of equilibrium in beliefsare novel. Section
3 commentson thisliterature. That section also pointsout theissuesdiscussed here, asregardsacertain
arbitrariness in the specification of the type space, also arisesin the standard definitions of a Bayesian
Nash equilibrium. Section 4 contains basic notation, while Section 5 discusses type-reformul ations of
agameand presentsthe axiom TIGER. Section 6 discussestherational learning literature. Concluding
remarksare presented in Section 7. Section 8isAppendix A and contains examples where we compute
critical typeformulationsfor the KL 93 assumptions that we mentioned earlier. Appendix B in Section
9, contains all the major proofs.

2. An Exampleto Illustrate Everything

’For related work on type-space representations and Bayesian learning, see. Jackson et. al.
(2997).



Example 2.1: Consider the following "matching pennies’ stage game:

Player B
LEFT RIGHT

Player A TOP 1-1 -1,1

BOTTOM | -1,1 1-1

We shall describe two different formulations of the game, differing only in the specification of

the type-space and the behavior strategies chosen. To fix the main ideas we will first discuss the one-

period version of the game. We will then go to the infinite-horizon model and show that the same

conclusions are obtained there, even with "learning.”

f1:

f2:

Consider the following two type-formulations for the one-period model:

Player A (resp. B) chooses abehavior strategy which selects actions TOP and BOTTOM (resp.
LEFT and RIGHT) with equal probability. Each player knowsthe behavior strategy being used
by the other.

Lett* bearealization from acoin-tossing experiment wherean outcome from { HEADS, TAILS}
is chosen with equal probability. Hence t* is an element of {HEADS,TAILS}. Let ° be
another realization from another coin-tossing experiment where an outcome from
{HEADS,TAILS} ischosen with equal probability, but which isindependent of the coin from
which t # was obtained. At date O Player A istold of t* (and is not informed about t®) and
player B istold of t° (and isnot informed about t*). We may consider t* to be player A’s"type"
and t° to be player B'stype. Supposethat each player knowshow thetypesaredrawn. Consider
the following play of the game: Player A chooses TOP or BOTTOM according to as t* is
HEADSor TAILS. Similarly, Player B chooses LEFT or RIGHT accordingto ast® isSHEADS
or TAILS. (A nicer story isto think of aplayer as being one of apair of twins. Each twin has
abirthmark which says either "HEAD" or "TAILS." Thetwin'sbirthmark isher "type." Each
twin chooses an action as a function of her type or birthmark as described above. Player B is
similarly one of apair of twins. A gameis an encounter between one twin of A and one twin of
B.)

In f1 each player has only one possible type. In f2 each player is one of two possible types.

4



In f2 al we have done isto use "types’ to encode the outcomes of randomizations. Alternatively, we

may think of types in f2 as being used to purify the mixed (or randomized) actions in f1. Note the

following:

a

Each player’s belief about her opponent will assign probability 1/2 to each of the opponent’s
actions being played. This is true for each player-type and regardless of which of the two
formulations, f1 or f2, isused. Hence, regardless of the formulation, these beliefs of players
forma Nash equilibrium.

In formulation f1 it isimmediate that players true actions form a Nash equilibrium - there is
only one vector of types, with each player-type mixing at each date with equal probability. In
formulation f2, each player-type is choosing a pure action. Since the matching pennies game
doesnot have aNash equilibriumin pure strategies, the vector of actions of any vector of player-
types does NOT constitute a Nash equilibrium. In particular, in f1 "true” play is a Nash
equilibrium, while in f2 it is not! The answer to the question "are players actions a Nash
equilibrium?"* cannot therefore be answered unambiguously unless astatement ismade asto the
formulation of the type-space being used.

Toall intentsand purposes, the two formulations represent the same"game.” In particular they
are decision-theoretically equivalent (and this will be made precise later). Suppose these
players are happily playing in the manner described above. The players are indifferent and
oblivious to the names that will be assigned to them, i.e., whether they are one of one or one of
two possible types. Even though they are content, game theorists, who may disagree as to the
type-formulation, may have lifelong fights as to whether or not they are playing a Nash
equilibriumin strategies! The notion of what precisely isatypeiscompletely inthe mind of the
modeler; players may not even be thinking in terms of types, only actions.

It should be clear that 1" and 2" are not the only formulations of the type-space to the above
game. Definef3’ to bethe situation whereafair coinistossed, if itisHEADSthe player plays
first action with probability 2/3 and the second with probability 1/3; andif itisTAILSthe player
reversestheprobabilitiesof thetwo actions. Thisisyet another decision-theoretically equivalent

formulation of the game.

One may be tempted to concludethat in the infinite-horizon model all these problems disappear



because of some sort of "learning." They do not. We illustrate this below and provide additional

remarks pertaining to the rational learning literature. Consider the following formul ations, anal ogous
tofland f2:

F1:

F2:

Player A (resp. B) chooses a behavior strategy which picks actions TOP and BOTTOM (resp.

LEFT and RIGHT) with equal probability in each period, independently of the past. Each player

knows the behavior strategy being used by the other.

Let t* bearealization from infinitely many independent and identical coin-tossing experiments
where an outcome from { HEADS,TAILS} is chosen with equal probability. Hence t* is an

element of {HEADS,TAILS}~. Let t® be another realization from an i.i.d sequence of coin-

tosses, { HEADS, TAILS}~, whichisindependent of the sequencefromwhicht” was obtained.

At date O Player A istold of the entire sequence t* (and is not informed about t®) and player B

istold of t® (and is not informed about t*). We may consider t* to be player A’s"type" and t°

to be player B'stype. Suppose that each player knows how the types are drawn. Consider the
following play of the game: at date n Player A looks at the n-th coordinate of her sequence of

coin-tosses - if itisaHEADS she plays her first action, TOP and if itisa TAILS she plays her

second action, BOTTOM. Similarly, if the n-th element of t® is HEADS player B plays the
action LEFT at date n and otherwise she playsaction RIGHT. Suppose further that each player

knows that the other is choosing actions viathisrule.

Just asin the one-shot gamewe havethefollowing: (i) Regardlessof theformulation, the beliefs

of players (of each type) form a Nash equilibrium. (ii) In formulation F1 players true behavior

strategiesformaNash equilibrium. Informulation F2, each player-typeischoosing apure strategy, the

true strategies (or limit points of continuation true strategies) do not constitute a Nash equilibrium for

the (zero discount factor) infinitely repeated matching pennies game. (iii) The two formulations are

decision-theoretically equivalent as we mentioned in (c) above. (iv) There are a zillions of other

equivalent type-formul ations of thegame, asin (d). Intheinfinite-horizon model, therearefurther items

to be noted:

v)

Absolute Continuity Conditions: It is easy to show that the ex ante absolute continuity

conditions required to get the Jordan and Nyarko convergence of beliefs resultswill hold here,



(vi)

regardless of which formulation, F1 or F2, isused. Indeed, both formulations obey the
common prior assumption. In Section 6 we show, as this exampleillustrates, that the Jordan
and Nyarko assumptions and conclusions obey our axiom TIGER. The absolute continuity
conditionsrequired in KL93 on the other hand arein ex post terms (i.e., they must hold for each
vector of types). Formulation F1, with only one vector of types, can be shown to obey the KL93
assumptions (and hence the KL93 conclusion on convergence of true play). Formulation F2,
with a continuum of possible types, can be shown to violate the KL93 assumptions and
conclusions (beliefsassign probabilities (1/2,1/2) to each action at each date, while each player-
type chooses apure strategy). Hence the KL 93 assumptions and conclusions violate our axiom
TIGER.

On Nachbar (1997): Nachbar (1997) has pointed out that sometimes prediction of the "truth”
and optimization may be in conflict. The repeated "matching pennies’ game above is an
example covered by the Nachbar paper (indeed it isthe leading example used in that paper). His
conclusion, however, depends critically upon the formulation of the game used. Optimization
holdsin both formulations F1 and F2 of the game. Nachbar’s definition of prediction, however,
only occurs in formulation F1. Hence the conflict between optimization and prediction of the
truth occurs under formulation F2 but does not occur under formulation of F1. In particular,
under formulation F1 the paradox disappears completely. Thisshowsthat the Nachbar paradox
violates the axiom TIGER. We will show in Section 6 that there if instead we insist on
prediction of beliefs then both optimization and prediction will be easily obtained, and further
they will obey TIGER.

3. Some more Commentsand Related Literature

It has often been suggested to me that the issues relating to the ambiguity in the definition of a

type can somehow be resolved by appealing to the Harsanyi (1967,68) concept of a Bayesian Nash

equilibrium (henceforth BNE). On the contrary, the problems discussed here are aso relevant in the

definition and the use of the BNE concept. Harsanyi’s definition a Bayesian-Nash equilibrium

presupposesthe existence, for each player i, of atype space T, and amapping ¢;:T; - F, from that player’s



type space T, to that player’s strategy space F;. The vector of these mappings, { ¢;}; for all the players
j are assumed, in the Harsanyi’s definition, to be known by each player, and given this knowledge each
player maximizes expected utility. Harsanyi, however, does not give too much guidance asto what the
type space should be. On one extreme a type could specify only a player’s payoff function (thisis
related to the notion of a sparse type used in this paper). On the other extreme atype could specify an
individual's payoff function and behavior strategy (and beliefs about others' payoffs and strategies, and
beliefs about beliefs, etc). (Thisisrelated to the concept of a comprehensive type used in this paper.)
Under the former notion of atype, the concept of a BNE provides tight predictions on the game (e.g.,
if the attribute vector is common knowledge the BNE becomes a Nash equilibrium). Under the latter
notion of atype, the concept of BNE implies nothing other than expected payoff maximization given
beliefs (so that, e.g., if the payoff matrix iscommon knowledge the only prediction from aBNE isthat
players are not using strictly dominated actions). (See Nyarko (1993) for details.) The main point of
this paper is that care should be taken whenever using a model where "types' are used to model
imperfect information. Precisely the same caution is required with the Harsanyi BNE!

Thispaper isalso related to the argument over mixed versus pure strategies. Many have argued
that playersdo not really use mixed strategies. Instead they choose certain, non-random actions at each
date. Mixed strategiesthen become representations of the beliefs of players. Thisargument has been
made by Harsanyi (1973), Aumann (1987) and many others who study the "decision-theoretic"
approachesto gametheory.® Thisargument has also been el oquently made by Binmore (1991, p.286).
In this paper we provide yet another justification for the interpretation of mixed strategies as beliefs:
the need for the consistency across type formulations, formalized in our main axiom TIGER.

Our work is related to the main theorems of Aumann and Brandenburger (1995), who provide

epistemic conditionsfor beliefs or conjecturesto be Nash equilibria. 1t should be clear that even under

the hypotheses of their main theorems, it is possible for the actual play of the players not to be a Nash
equilibrium even though the beliefsare. Thisdistinction is captured in formulations F2 as opposed to
F1 of Example 2.1. One could interpret the Aumann and Brandenburger (1995) paper as giving
epistemic conditions for why we should study Nash equilibrium of beliefs as opposed to actual play.
As suggested in this paper, working with beliefs as opposed to actual play enables one to achieve the

3See Aumann (1987) and Aumann-Bradenburger (1995) for further comments and
references.



consistency formalized in the axiom TIGER.

4. The Repeated Game Structure

| isthefinite set of players. The set A, representsthefinite set of actionsavailableto player i at
each daten=1,2,...,and A=]],A.. H" = AXAx..XA (N-times) isthe set of histories of length N; H
° jsthe singleton set consisting of the null history, which we denote by h° H=U:_H" isthe set of all
finitehistories; Z = [],-; A istheset of infinite historiesor play paths. The projection of z& Z onto the
period n coordinate is denoted by z, while the projection onto the coordinates of periods 1 through n
isdenoted by z(n). Foranyiinl, z ,and z(n) arethei-th coordinates of z, and z(n) respectively. Perfect
recall isassumed: when player i ischoosing her date n+1 action she will know the date n history z(n).

Given any metric space X, we let P(X) denote the set of probability measures defined over
(Borel) subsets of X. Unless otherwise stated the set P(X) will be endowed with the weak topology.
Given any feF, v(f) € P(Z) denotesthe probability distribution over Zinduced by f. The set of behavior
strategies for player i istheset F, = {f:H - P(A))} and F=]],, Fi . The space F is endowed with the
topology of weak convergence. A purestrategy for i isany behavior strategy which takesvalueson the
vertices of P(A)).

Each player i in | has an attribute vector which is some element 6, of the set ®,, assumed to be
a compact subset of a finite dimensional Euclidean space. u;:®xA-R is player i's within-period

continuousand bounded utility function which dependsupon her attributevector, 6,, aswell asthevector

of actions, a& A, chosen by the players. Each player i knows her own attribute vector 0, but does not
necessarily know those of other players, 0, for j#i. Player i has a discount factor which is a known
continuousfunction, 5:0,~[0,1), of the player i’s attribute vector. Specifically, ®, = ®,%[0,1), where ®,
< RA representsthe set of stage game payoff vectors and where §,:0, - [0,1) isthe projection of ®; onto
its second coordinate, and representsthe discount factor. Any set of thisform will be called an attribute
vector space for i. Define U;:0xZ-R by U,(0,2) =Y 7_,[8,(0)]""u(6,,2,) and V:0xF-R by V,(0,f) = [,
Ui(6;,,2)dv(f).

Each player i is characterized by atype, t;, which specifies, among other things, that player's
attribute vector, 6,. A type-space for i isany set T,=0xT;” where ®, is an attibute vector spaceand T
is a complete and separable metric space. (This definition alows T,=0,.) We let 0,(t;) denote the

9



attribute vector of player i of typet;, so that 0,(.) isthe projection of T; onto ®,. A type-spacewill beany
T=]]iu T;, where T, isatype-spacefori.
If X isacartesian product X=Y xZ andn ¢ P(X), we denote by Marg, n themarginal of nonY.
Define*
Q=TxXFxZ . (1)

We shall say that a probability measurP(€2) respectsv if Marg, u(.|t,f) =v(f) for p-a.e. {,feTxF.

An ex ante subjective belief for a player i is any probability, pverQ which respects. To see how an

ex ante subjective belief may be obtained, we note here that it constructed from the following three
building blocks:
0] (Beliefsabout others) Each player-type has some belief over the types and behavior strategies

of others. This defines Marng () -
(i) (Own Behavior Strategies) Each such player-typechooses some behavior stratefpy)f This

defines Marg - L |t) , which assigns point mass fxj.
(i) (Exantedistribution of types) Each player i has an ex ante distribution over the set of own-

types inT This defines Marg T#

The product of the measures in parts (i) and (ii) produces a measure gkeconditional ont,.
Combining this with (iii) results in a measure over TxF. Using the meashea results in a measure
overQ. This is player i's ex ante subjective belief. Part (iii) is required primarily for the measure-
theoretic technicalities. One may object to the requirement in (i) on the grounds that players should be
expected to have beliefs over the behavior strategies of others and not over the types of others. This is
avalid objection. We discuss this in Section 5, and argue that this objection supports the use of our main
axiom, TIGER.

If n, is a probability measure on a complete and separable metric splacéX1,2,...K, we let
®r-mx denote the product of the measurgg §_, on the cartesian produff;_,X,. We impose the

following assumptions on,u

Assumption 4.1

“The cartesian product of metric spaces will always be endowed with the product topology.

10



a. (independence of strategies) Marg h(r_Lr) = [laMarg H(.Il:rj) for y a.e. ={t};,.
i

b. (independence of types) Marg; y, =[], [Marg T M.
J

Assumption 4.1 says that player i believes that (a) conditional on players' types, players choose
behavior strategies independently and (b) that players' types are drawn independently. The set of beliefs

of players that we allow is therefore the set
B(2) = {1 ¢ P(2) |l respects and satisfies Assumption 4.1 (with yFh 2

Given any sets {},, and {Y},,, and any functions ;:X; - Y, for icl, we define X[[,., X,
X=[1.X; , and f(x;) = [].ifi(x). For eachsl, define the equivalence relati, ~, on Fas follows:
vf and f e F, f ~*f’ if vf, eF,, v(f,f,) =v(f,/.f,). Let ¥ denote the set of equivalence classes of
~K . From Kuhn's (1953) Theorem (see Aumann (1964) for the infinite-horizon-bas¥)-)-

F™ such that for any (behavior strategy mixtugerP(F), V f, ex(¢;) andvfeF,, the probability
distribution on Z induced by, and f; is equal tov(f;,f;). The behavior strategyi(¢;) is said to be

realization equivalent to the mixed strategy,. We refer to fas theKSR (for "Kuhn Strategic

Representation”) af,. We shall write;f=«;(¢;) when we mean that; 16 any member of the equivalence
class ofi(¢;)."
Fix any subjective belief;jz2 B(€2) of player i. Define
! =1(Marg | H(.|)__) vij and f = {f},. (3

Under the independence assumption 4.1, each type of playea.ejphas the same belief about player
j#i equal to the marginal of() on . Hence for#j, f;' is the KSR of the belief of each type of player

I about player j's behavior strategy. Next define
fi(r) = {fi(w).f.} 4)

The only difference between if (3) and f(z) in (4) is in the i-th coordinate - the latter conditions on
the typer, while the former does not. The behavior strategy profid$ fis the KSR of player-type's

beliefs. The behavior strategy vectoid the KSR of someone who, like player i, has beliefs given by

11



W , but who, unlike player i, does not observe the own-typ€To illustrate the difference consider
Example 2.1. Letf,s and f,s denote the strategies chosen by A and B in formulation F1 - randomize
at each date with equal probability - and defipe(, o5 , fs05)- In both formulations F1 and F2,=f
f,s for all i. In formulation F1, which has only one vector of typ&s) £f, Vi; in formulation F2,
fi(r)={f (%), fios} where j+i and f(z) is the pure strategy determined Hy {HEADS,TAILS}" as
described in example 2.1.)

Fix a collection of ex ante beliefs §1, and let {f(z)},, denote the behavior strategies chosen

by the vector of player-types{t},,. We now define a distribution  B(2), the outside observer’s

belief induced by {}}..,. Intheliteraturethisisoften defined asthe"true" distribution, and isthe measure

with respect to which theorems are proved. The measusalgfined to be the unique element ofB(

such that MarngFp* = ®;, Marg X { In particular, [1is the ex ante belief of an outside observer

who knows how players choose behavior strategies as a function of their types, and for each iin | has
the same ex ante beliefs about each player i's own-types as player i herself. "Defiectfie KSR of

1" not conditioning on types (and observe that below is the same akifi (3) above except that p

replaces |
= «(Marg E)Vj8| and = {f (5)
j
Of course the KSR of ‘Lconditioning on types={t},, is precisely the vector {t)},, of behavior

strategies chosen by those player-types.

5. Equivalent Type-Refor mulations

5.1. Consider as fixed the following: the set of players I, the attribute vector $paaeg the space
of actions A (and hence the spaces F Andrhe sets below is the set of all "games" g which can be

constructedjiven the primitives {I, ®,A}:

G = {g=<T, {u}., W >| T isatype-space; {l, ¢ ][..B(2) whereQ = TxFxZ; and i is the

outside observer belief induced byXu }. (6)

Definition 5.1 (Equivalent type-Refinements). Fix any pair of tuples g=K{u}.,,.> and

g'=<T'{u'}..l "> inG. We say that ‘gs an equivalent type-refinement of g (or g is an equivalent type-
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coarsening of g') andwewrite g' > g, if thereexist sets {1'},., (each acomplete and separable metric

space) such that Viel, teT;, and yiel,

I (type-refinement) T =TxI ;
ii. (same own payoffs) 0i(t") = 6i(v) whent'=(v,) ;
iii. (same beliefs about others)  Marg p]’__(.\ri’=(ri,yi)) = Marg ,&-\Ti);

V. (same expected own play) Marg ul’__(.\ri) = Marg -FF("T‘); and

V. (same distribution of types) MargT. N = MargT. .

Definition 5.2: ge G is anequivalent type-reformulation of g'e G if there exists & ¢ G such that either

(i) g is an equivalent type-refinement of both g ahdrdii) § is an equivalent type-coarsening of both

g and g. We then say that g and @reequivalent, and we write g- ¢'.

The equivalences in (iii) and (iv) of Definition 5.1 are in the sense of "Kuhn equivalences”
defined in Section 4. If'g- g, atype; in g is sub-divided into other types, with generic membgy)(
Parts (ii) and (iii) require that the new type have the same attribute vector and belief about others as the
original ones. This implies that if each player is optimizing then conditiong) each player-type(y;)
is indifferent between her own play and the play of player-typg'X Part (iv) requires that after
"integrating out" the;'s we obtain the same original play. This shows that the role of the type-refinement
is to encode in the new type some information that may be used to pick a realization from what was
originally a randomization over actions. In summary, if g dratgtwo equivalent games, player-types
(t,y;) andt; will have the same payoffs and same beliefs and the games gantgdjffer in the fact that
they's are used in encoding the outcomes of realizations of randomizations. | therefore interpret the

games g and’'as "decision-theoretically” equivalent.
The notion of equivalent type-refinements results in the partial orderingnG. A minimal

"refinement”, defined as "sparse" below, is one where a type is the same as an attribute vector, so that the
type has absolutely no realizations of randomizations encoded init. A "maximal” refinement on the other
hand, defined as "comprehensive" below, would require each player to do all the randomizations at date

0 and encode them entirely in his/her type. In Example 2.1, formulation F1 is a sparse formulation, while

13



F2 is a comprehensive formulation.

Definition 5.3: A g= <T,{u;}...,.L > in G is asparse formulation if T, = ®, Viel, and is aomprehensive

formulation if each (or jzalmost every) player-type in g is choosing a pure strategy.

One can think of integrating out the realizations of any randomizations which are encoded in a
type. For example, suppose that there are two possible types of PlaygryA,and 0,,v"),each with
the same attribute vectéy and each occurring with probability 1/2. This can be collapsed into one type
by integrating out the's in the following manner: Consider there being only one type, dallednd
suppose that this player-type chooses the (KSR of the) mixed strakegly assigns probability 1/2 to
the behavior strategy chosen by player-typey() and probability 1/2 to that chosen by player-type, (
v') . This operation shows how to construct a sparse formulation for any given game. Next, one can
think of an operation going the other way where one encodes in a type the realizations of all
randomizations. This will produce from any game g an equivalent game which is comprehensive. We

therefore obtain the following:

Proposition 5.1: Fix any game g is. 3 g¢G and g &G such that g- g ~g, gis sparse angd is
comprehensive.

Proof: The proof of this and all other main results appear in Appendix B.

We now state our axiom TIGER. gkoperty is any statement pertaining to games which, in any
given game, may be true or false. In particular, a property is a binary rel@ieq{®:1}, which assigns
avalue "true" or "false" to each game. All our numbered definitions in Section 6 below implicitly define
a property for games. An "assumption”, "conclusion" or "paradox" is a property of games, which may
or may not hold in any particular game. The axiom TIGER below will be a requirement on properties

of games:
Axiom of Type-Independence among Gameswhich are Equivalently Re-formulated , TIGER: A

property of games obeys the axiom TIGER if for each game g ¢ G the property holds for g if and only if
it also holds for all other games g ¢ G which are equivalent to g.
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The axiom TIGER is arequirement not only among games which are ordered by >, but rather

among all games which are equivalent. The following, however, isimmediate:

Proposition 5.2: Let b be a property of games and suppose that bistruein gameg ¢ G if and only if it

istruefor al other gamesg’ ¢ G for which eitherg > g' org’ > g. Then b satisfies TIGER.

5.2. Beliefsover the Typesof Other s? Wenow return to an issue brought up in Section 4. One

may argue that it is not appropriate to model players as having beliefs over the types of others. All that

should be important is a player’s beliefs about the strategies that will be used by other players. So,
suppose that each player i is not characterized by, anuB(Q2), but rather by the following three
components: (i) beliefs about the strategies of othersP{F.), common to all types of player i; (ii) the
behavior strategy(k;) chosen by each player typeT;; (iii) the ex ante distribution over the possible
own-types of player i in;T The above three components do not specify player i's beliefs about the types
of other players in T;: there are many joint distributions oveKkIF, for which the KSR of the marginal

onF,is T Giventwo games g=R{u},,)>and g=<T,{u"}..,)""> inG on the same type space, let

us say that g and gre strategically equivalent and Writeﬁ g’ if they share the same components (i)-

(iif) above - that is, if for all i in I, (i) Marg I:p—Marg = K; (i) Marg F”( |t;) = Marg Fp( )

for all t; (-a.e); and (iii) Margl_ = Marg Tl,l Both g and gare in some sense valid representatlons

of the interaction between the players After all, why should it be important for player i to be correct in
specifying player j'sype? After we have specified i's beliefs about j's behavior strategy, knowledge by
i of j's type should be "decision-theoretically" irrelevant in some sense. This sense is captured by the

equivalences of Definition 5.1 above. In particular, since Definition 5.1 does not make reference to i's
beliefs about j's type space faii jit is easy to see that whenevera g then g~ g in the sense of

Definition 5.. (The converse of course is immediate.) This therefore provides further justification for
the use of the axiom TIGER: two games which are strategically equivalentidsbe considered

"equivalent” so TIGER must be imposed on any property we will use for such games!

*Formally, define ¥ = TxI" with I" atrivial singleton set and construct § in G from g by
extending g onto T in the obvious manner. Itisthenimmediatethat § >gandg >g’,sog~ g¢'.
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6. Rational Learningin Games

In most of the rational learning literature, there are three basic parts: the first assumes that players are
optimizing; the second part imposes an absol ute continuity assumption over beliefs; the third part then
showsthat theseassumptions imply convergence to some sort of equilibrium. Wenow consider thethree
partsformally. The message of this section will be the following: (i) for the conclusions of the rational
learning literature to satisfy TIGER, we will have to insist on statements pertaining to equilibrium in
beliefs as opposed to equilibrium in strategies; and (ii) for many of the assumptions and conclusions
whichviolate TIGER, they holdif the type spaceissufficiently coarse and are viol ated whenever thetype

space is sufficient refined (or vice versa).

6.1. Optimization
Definition 6.1: (optimization) The game g=<T,{u}.,, &' >¢ G satisfies optimization if gM,uM %=1
Viel, where

M;={(7,f,2)eQ: 5,(6(t;))>0 and f maximizes | i Vi(%(fi), f,", )du(.|t)} and

M.%={(t.f,2)eQ: 8(6,(x))=0 andvn, z,,,, maximizes| i U(O(R): Zines » YAK(-|Z(N) )}
where the integration in the definition of M over f'¢ F,.

Definition 6.1 requires each player i to be maximizing her subjective expected discounted sum

of utilities with | probability one. Whenever the discount factor is equal to zero (i.e., on th¢ set M
above) player i will be required to maximize her expected utility at each date. Under equivalent type-

reformulations, players' beliefs and payoff functions do not change, so the following should be immediate:

Proposition 6.1: Definition 6.1, optimization, obeys TIGER.

6.2. The Absolute Continuity Assumptions. Given any two probability measuresand |

on some measure space Xjgabsolutely continuous with respect toiffor all measurable subsetsD
X, 1'(D)>0 implies that ({(D)>0. We then write j«u”. Y and (' are mutually absolutely continuous

if W'«u” and '«p’. Fix a game g=%, {4} .., & >¢ G, and consider the following definitions:
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Definition 6.2 (CPA) : g obeys th€ommon Prior Assumption (CPA) if and only if 4 = ' Vi el.

Definition 6.2* (CPA*): g obeys th€ommon Prior Assumption (CPA*) if and only ifVi «l,

MargFﬁ = Marq: | Viel.

Definition 6.3 (GGH): g obeys thg@eneralized Harsanyi consistency condition (GGH), (or ex ante

absolute continuity) if and only if Mar U o«  Mar M Viel.
y) y ﬁx , M gTin H

Definition 6.4 (KL-T): g obeygKL-T) (or ex post absolute continuity) if and only i{ i, 1)=1 where
Teir = Ni{ t=(x,w)eT|Marg, W(.|1) « Marg; p(.|t)}-

The learning results of Jordan (1991,95) use the common prior assur(@@ah, Condition
(GGHY is used in the learning results of Nyarko (1994 and 1997b). Assun(istier) is the natural
extension of the KL93 assumptitmthe model with many types, and delivers the KL93 conclusions for
p*-almost everyt. It is easy to see that the common prior assumption implies but is not implied by
condition(GGH). Indeed(CPA) is strictly stronger tha(GGH). Further, conditiofKL-T) implies but
is not implied by conditioGGH) (for a proof that(KL-T) implies (GGH) see Nyarko (1997b)).
Example 2.1 (formulation F2) shows tH&GH) can be true whiléKL-T) fails, so (KL-T) is strictly
stronger thaiGGH).

The common prior assumpti¢6PA) (as opposed (CPA*)) violates TIGER. The problem is
that(CPA) requires each player to get correct the mapping from each other player's type to that player's
behavior strategy. For example fix a game g with two types of each player and suppose that g obeys
(CPA). Define another game exactly the same as the first except that in the new game Player A mis-
labels the types of B . In particulargif andt; are the two types of player B andg) and f;) are the
behavior strategies they use, then in gamelayer A incorrectly believes player-typgis using ft;)
and player-typég is using fgg). It should be clear that the re-labeling is "harmless" and that g’and g

are equivalent games. (Indeed, this was precisely the discussion at the end of Section 5.) The game g,

® Elsewhere (Nyarko (1997a)) | have defined Condition (GH) "for generalized Harsanyi
common prior assumption” to be whereapd | are mutually absolutely continuous with respect to
each other. (GGH) above generalizes this latter condition (hence the name "GGH") by first requiring
merely absolute (and not mutual absolute) continuity, and this with respect to marginals.
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however, obeys (CPA) while g’ violatesit. Hence (CPA) violates TIGER. For thisreason (CPA) is
really not agood assumptionto placeonagame. Assumption (CPA*) getsaround this problem: (CPA*)
obeys TIGER and implies the Jordan convergence results which were originally proved with CPA (see
Propositions 6.2 and 6.5 below) .

If one distribution is absolutely continuous with respect to another distribution over a product
space, then the same will be true of their marginal distributions. Coarsening a type-spaceis similar to
the operation of going from a joint to a marginal distribution. It is therefore not surprising that if
condition (GGH) (resp. (KL-T)) holdsin agame and we coarsen the type-formul ation, condition (GGH)
(resp. (KL-T)) will continuetohold. Thedifficulty liesin going from onetype-formulationto afiner one.
Indeed, Example 2.1 shows that (KL-T) may hold in one game (asin F1) but may be violated when the
type-formulation isrefined (asin F2)- so (KL-T) violates TIGER. This does not happen with (GGH),
however, and in particular (GGH) obeys TIGER. This is because player i’s beliefs about others are
independent of i'stype, and i'stypeisthe only type used in the statement of (GGH) - in particular, under
(GGH) player-type t; only hasto be "correct” (in terms of absol ute continuity) about the average play of
others; and beliefs about average play do not change with i’'stype or with the type formulation. Similar
reasoning shows why assumption (CPA*) obeys TIGER. Condition (KL-T) on the other hand conditions
on the true vector of types, which will change as the types, and hence type-formulations, change. In
particular, under (KL-T) player-type 1, hasto be"correct” (in terms of absolute continuity) about the true
play of others, and thistrue play will change with the type formulation. The ambiguity of the notion of
what isatruetype leadsto the failure of (KL-T) to satisfy TIGER. Formally we have the following two

results:

Proposition 6.2: (a) (CPA*) obeys TIGER; (b) condition (GGH) obeys TIGER; (c) condition (KL-T)
violates TIGER; and (d) (CPA) violates TIGER.

Proposition 6.3 (Monotonicity in (KL-T)): Fix any gin G and suppose that g obeys (KL-T). Then all
equivalent type-coarsenings of g also obey (KL-T).

Proposition 6.3 implies that given any chain of equivalent games linearly ordered by > from
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coarsest to most refinédhere will exist a critical game such that all coarser ones @iey) and all

finer ones violate it (or else either all obey or all violiie-T)). Examples 8.1 and 8.2 in Appendix A
compute such critical games in two different chains of games. Example 8.1 provides a chain of games
O O ..., @ Where g for k<~ has a countable type-space andmuncountable type-space. The game

g Will satisfy (KL-T) for k<ee and will violate it for k=-. This suggests a connection between condition

(KL-T) and the countability of the type-space. Indeed, we have the following:

Proposition 6.4 ((KL-T) and the Countability of the Type-space): Fix any game g=&{u;}.,.u>inG

with at least two players. Suppose g ob@s-T) and is comprehensive. Then the set of plays is
countable: i.e., there existgauntable subsetb of Z such that the eventofE(,f,z) inQ| ze ®} has |

and g probability oneviin I. If, in addition, each vector of types results in a different play path, then the

type-space must be countable.

In F2 of Ex. 2.1 each player-type chooses a pure strategy at each date. Proposition 6.4 therefore
implies that (KL-T) cannot hold for that example. When the type-formulation is not comprehensive, so
each type does not choose a pure strategy at each date, it is possible to have a model with uncountably
many types which satisfy the Kalai and Lehrer assumbtiBroposition 5.1, however, then shows that
the “game” can always be equivalently reformulated so that in the new game each player-type chooses
a pure strategy. In that case, as Example 2.1 indicates, the notion of exactly what a type is becomes
ambiguous, as is whether or not assumption (KL-T) holds. We note that this result relies critically on the

independence assumptions u$ed.

"By "linearly ordered by ...." we mean that we can index the games by k in [0,1] such that
k>k" impliesg, > g, (or vice versa).

8A very nice example to this effect was independently provided to me by R. Smorodinsky
(1995) while this paper was undergoing revision.

Suppose that there are two players each with atypein [0,1], but that the set of possible
vectors of typesisthe diagonal on the unit square. Suppose each player-type chooses a different pure
strategy, and beliefs are such that conditional on a player observing her own type, she knows
perfectly the type of her opponent (which is equal in value to her’'s). Then KL-T holds with an
uncountable set of types, a violation of Proposition 6.4.
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6.3. The Convergence Results of Jordan, KL 93 and Nyarko. Thenorm .| denotesthe

total variation normonP(2); i.e., givenp, geP(2), | p-ql = Supe| p(E)-q(E)
Borel measurable subsets E of Z. Fix any attribute vector 6={6} ;. ¢®. Define Vigl,
Ni(0,) = {f=[];. fieF: f e argmax V,(0,f,,-)} and N(0) = ni, Ni(6) ; )
ND(0) = {v' eP(2): 3 feN(0) withv’ =v(f)}. 8
SE.(0) = {f =[]« fieF: Viel, 3(f),.;.,e F with | =f; such that
(i) f e argmax V(0,f,-) and (ii) [v(f) - v(f) | < e} and SE(0) = SE(0). (9)

, Wherethe supremum isover

N(0) isthe set of Nash equilibrium behavior strategy profilesfor the complete information game
with attribute vector 6. ND(0) isthe set of all distributions of play that can be generated by some Nash
equilibrium behavior strategy profile. SE.(6) (resp. SE(6)) is the set of subjective s-equilibria (resp.
subjective equilibria). One can show that ND(6) is equal to the set of al distributionsinduced by some
f ¢ SE(0). (The definitions on subjective equilibria are taken from Kalai-Lehrer (1993b). See aso
Battigali et. al. (1988) and (1992).)

Given any history h e H, and any behavior strategy f, ¢ F; for i<l, definethe continuation strategy
f,, asfollows: Vh'e H, f,,(h") =f(hh") wherehh’ isthe concatenation of hand h’. Analogously, given
f={f}., e Fandhe H, definef,c Fby f(h") =f(hh") Vh' ¢ H. Given asequence {X.}-, in some metric
space X and aset y < X, write x,,~°y if every cluster point of {x.} -, liesin the set y.

Fixagamegin G andletf, f(t)={f,(z)} . adf beasineqg.’s(3) - (5). When the common prior
assumption holds, either (CPA) or (CPA"), f =fi=f" Vi andj. Define

Quen = {0=(tf,2)eQ: f = =f Vij and ', ~°N()}. (10)

Theset Q.. i1Sthe set where the limit points of KSR's of beliefs of the future given the past (and not
conditioning ontypes) lieinthe set of Nash equilibrium strategies of theunderlying completeinformation
game of the realized attribute vector 0.
Next define
Quyako = WNCDN C, (11)

where W = {(z,f,2)eQ: lim | v(f) - v(f ) =0 Viel}; (12)
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CD = n, CD; with CD; = {(1f,2)eQ: v(f,p) ~°ND(0)} Viel; and (13)

C =nuC with C = {(t.f2)eq: fiy ~°N(O)} Viel . (14)

The set W is the event where each player i's' beliefshout the future, {z,,2y.»---}, given the past,
z(N), (andnot conditioning on own-types) "merge" with those o{and hence with each other) as the
date N tends to infinity. The set CD is the set where limit points of each player's beliefs about the future
play conditional on the past (aganet conditioning on own-types) is the same as the play of some Nash
equilibrium. The set Cis the set where for eacl i, cluster points of the continuation strategies of
player i's KSR of beliefs not conditioning on own-typé&dief in the set N6,). In particulal®, if f~=
(f; ,£,")eF is such a cluster point thehi§ a best-response tg for the player with attribute vectoy.

Finally, define

Q = {0=(t,f,2)eQ: Ve>0, IN=N(e,0) such that/n>N, f,,(z) lies in SE(6)}. (15)

The set Q,, is the set of sample paths whete>0 (the continuation of) the strategies of players
eventually lie in the set of subjectigeequilibria of the game with the realized attribute vector,

The results in Proposition 6.5 below are the main results of Jordan (1398),aKkd Lehrer
(1993a), and Nyarko (1997b). The result we state for Jordan is a slight generalization of Jordan (1995),
relaxing the assumptiofCPA) he used to the weaker assumpt{@®A*) - the proof appears in the
Appendix B. Immediately following this, we record in Proposition 6.6 the fact that the Jordan and
Nyarko results satisfy TIGER, while the Kalai and Lehrer resultates it (as is easily seen from

formulations F1 versus F2 of Example 2.1).

Proposition 6.5: Fix any game g=<T, {}i,, > in G.
@ (Jordan): Suppose g satisfies optimization (6.1) §8BA") . Then

W (i) = 1. (16)

' Notethat C # N, (t.f,2)e€: f', ~° N(0)}. Instead, the former set contains the |atter,
usually strictly. In particular C is not the set where continuation of KSR of beliefs are Nash
equilibria. The difference is the same as the difference between Nash and subjective Nash equilibria,
and is due to the fact that on the set C players are alowed to have different (limit) beliefs about play
off the equilibrium path.
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(b) (Nyarko): Suppose g satisfies optimization (6.1) &8&H). Then

“*(QNyarko) =1 (17)

(c) (Kalai and Lehrer): Suppose g satisfies optimization (6.1) &dd-T). Then

W (Q)=1. (18)

Proposition 6.6: () Eq. (16) obeys TIGERb) Eg. (17) obeys TIGERc) Eq. (18) violates TIGER.

The lemma below indicates an entire class of properties of games which will obey TIGER. The

lemma is used in the proof of parts (a) and (b) of Proposition 6.6.

Lemma 6.1: Fix any sets P= ®, x Zand D c ® x Z and any numbers &nd K for i in I. Define the
property b for i in | and the property tas follows: g= €, {4;}.,, & > in G satisfies p if and only if
1 (D)=k; ; and g satisfies bif and only if i(D)=k’. Then b and each Isatisfy TIGER.

In the monotonicity result below we use the definition of(@Eof (9) where we insist that the
f"s of that definition are equal to the beliefs of player i about j. This monotonicity resultis related to the
work of JacksoH, Kalai and Smorodinsky (1997).

Proposition 6.7 (Monotonicity): Fix any g inG and suppose that g obeys the KL93 conclusion in eq.

(18). Then the conclusion also holds for all equivalent type-coarsenings of g.

6.4. On Nachbar (1997). The conclusion of Nachbar (1997) is that there is an inherent conflict
between prediction and optimization when the strategy space is sufficiently rich. The definition of
optimization is as i6.1). We now define prediction. Given any history h of lerigthsay, the cylinder

set C(h) is the subset of all play paths Z whose first elements equal h. The definition below is an

The Jackson et. al. paper was set in the context of a single agent inference problem. The
connection with this paper however isimmediate. The set ® of their paper corresponds to the type
space T here. What they refer to as arepresentation is very similar to what we call here an
equivalent reformulation of agame. They introduce a concept of learnability, which, modulo
technicalities, is Eq. (18). Proposition 6.7 then shows, loosely speaking, that if agamegin G is
learnable (or specifically’ithen so too is any equivalent coarsening of g.
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absolute continuity condition over cylinder sets.

Definition 6.5: Thegame gin G obeys Ex Post Local Absolute Continuity (EPLAC) if and only if for
every hinH, and i -a.e. =={t},, v(f(z))(C(h))>0 impliesv(f(z; ))(C(h)) > 0.

Given anys>0 and any integel, and any f and’fin F, f is said tde,4)-play like f' if for all
histories h of length or less,|v(f)(C(h)) - v(f')(C(h)) | < &. Define

Q= { 0=(t.1,2)6Q: Ve>0, Viel, V integers), IN=N(e,0,0) s.t.Yn=N, f,,,(1) (.0)-plays like f.(r)}.

(19)

Definition 6.6: (Nachbar Prediction): The game g i obeys Nachbar prediction if and only if
(i) g satisfies EPLAC; and (ii)
H(Q)=1. (20)

Definition 6.7: (The Nachbar Paradox). The game g G satisfies the Nachbar Paradox if ihi the
case that g obeys both optimizati@l) and Nachbar Prediction.

Nachbar (1997) argued that in games where the strategy sets are sufficiently rich there is an
inherent conflict between optimization and prediction in the sense of the definition above. Asillustrated
in Example 2.1, a sufficiently rich strategy set requires a sufficiently refined type-space. In particular,
in that example under formulation F1 prediction and optimization hold, while under formulation F2,
optimization holds but prediction fails. In particular F2, the more refined space, obeys the Nachbar

paradox while F1 violates it. Among other things this implies the following:
Proposition 6.8: The Nachbar paradox violates TIGER.

We also have the following monotonicity result:

Proposition 6.9 (Monotonicity): Fix g and gin G with g > g. (a) If the Nachbar paradox holds for
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g then it also holds for'gand(b) if g’ violates the Nachbar paradox (i.e. ilsgtisfies optimization and

prediction) then so too does g.

Proposition 6.9 above is proved with the aid of the following two lemmas which may be of
interest in their own right. The first, Lemma 6.2 below, shows that EPLAC obeys TIGER, which is
interesting when compared to the failure of (KL-T) to satisfy TIEER

Lemma6.2: (EPLAC) satisfies TIGER.
Lemma6.3: Fix g and gin G with g > g. Then if the property i(R0) holds in d, it also holds in g.

The Nachbar paper asks whethree play can be predicted. We have argued that there
may be problems with the notion of the "truth" here, and in particular that the Nachbar paradox violates
TIGER. Instead of asking whether there is prediction of the truth, we could ask whether there is

prediction of beliefs. Define the 38t as follows:

Qpg z{ o=(t,f,2)eQ: Ve>0V integers, IN=N(g,0,0) s.t.vn=N, ., (,0)-plays like f, ,Visl} (21)

Observe that this is the same as the set where Nachbar's concept of prediction ocQuia (see
(19)) except that we use beliefgf and f, in place of true strategies and beliefs conditional on own-
types, f,(t) and f, (%), respectively. Here it may be useful to stress again thdt¥ and f,,
represent the same beliefs ovgrtRe strategies of others; the only difference is as regards beliefs about

own strategies - the latter conditions on own-typesile the other does not. It is easy to see that on the

2Although (EPLAC), ex post local absolute continuity of with respect to jlobeys
TIGER, it is easy to see that ex post lavatual absolute continuity - jwith respect to pfor all i
and j - does not obey TIGER. Indeed consider Example 2.1. Under F1 all players' beliefs are
mutually absolutely continuous with respect to each other (indeed the common prior assumption
holds in that case). Consider now, however, F2 and fix a vector ofityfags t5). Player A of
typet, assigns probability one to one particular date 1 action that she, Player A, will choose while
player B assigns equal probability to both the actions of Player A. The players' beliefs, conditional
on their types, are not locally mutually absolutely continuous in F2. Hence ex post local mutual
absolute continuity does not satisfy TIGER.
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set Qpg, for large enough n,\f, (e,0)-plays like £, , Vi,jcl  Hence ignoring beliefs about own play,

over time players make approximately the same predictions about the future play. For example at any
period n sufficiently large, playersiand j will have approximately the same beliefs about the which action
a third player k will choose in the next period. This is not exactly prediction of beliefs - indeed we have
not modeled what i thinks about what j believes. It is however prediction beliefs in the sense that i and

j will have the same beliefs about any third player k. Analogously to Definition 6.6 we therefore have:

Definition 6.8: (Prediction of beliefs): The game g i obeys prediction of beliefs if and only if (i) g
satisfies EPLAC; and (ii)

H () = 1. (22)
From Lemmas 6.1 and 6.2 the following is immediate:
Proposition 6.10: Prediction of beliefs obeys TIGER.

To give an indication of how prediction of beliefs can be obtained, we note that co(@@kin
implies prediction of belietd (To see this apply Proposition 6.5b and observe that®y;). In
particular, both formulations F1 and F2 of example 2.1 obey Prediction of Beliefs. When we move from
strategies to beliefs, the Nachbar "paradox” disappears, and insteadGfBiderwe very easily obtain

both prediction and optimization!

7. Conclusion

Jordan (1996) states that a notable shortcoming of Bayesian learning models is that "convergence
occurs at the level of expectations and not necessarily at the level of actual strategies.” This paper shows
that this should not be considered a shortcoming. Instead, if we want our results to be consistent in the
sense of obeying TIGER, we can make statemenitg at the level of expectations or beliefs.

Ambiguities in what constitutes the "truth” force us away from statements on true strategies and toward

3An alternate definition of prediction of beliefs would replace condition (ii) of Definition 6.8
with u'(W)=1 where W is as ifll2). Since We Qg this results in a stronger notion of prediction of
beliefs. This stronger definition also obeys TIGER, and also follows from con(lz®H).
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statements on expectations.

What is the correct type-formulation? There is no "correct” type-formulation. We advocate
neither the sparse nor the comprehensive formulation. If you believe that people really do not mix, then
you are advocating the comprehensive formulation. But then the Nachbar paradox holds (see formulation
F2 of Example 2.1). On the other hand if you adopt the sparse formulation, you must deal with the
arguments of those who insist that people do not mix. In Section 6 we showed that there is usually a
critical type-formulation such that the KL93 assumptions and conclusions hold for all coarser
formulations and fail to hold for all finer formulations. In that case you may define what is the correct
formulation in terms of whether you want the KL93 conclusions to hold. In summary, if one is not
willing to move to concepts like equilibrium in beliefs which satisfy TIGER, there is no obvious "correct”

type-formulation. The best type-formulation, as with beauty, may lie in the eye of the beholder.

8. Appendix A: Examples

Example8.1: (Acritical g for (KL-T)): Let I, A and® be as in the matching pennies game of Example
2.1. We now define for each k = 0,1,2,3%,.a game'ge G. Define §andg" be formulations F1

and F2, respectively, of Example 2.1. Feki~, define T¢ = {HEADS, TAILS}¥, and suppose that the
types in T are generated via k independent tosses of a fair coin. The behavior strategy of player-type
T={Ti1, Tiz Tt € T in game is as follows: At date r k, choose the first action (TOP for i=A and
LEFT for i=B) if 1, =HEADS, and the second action otherwise; and at date n >k, randomize over both
actions with equal probability. This defines the gafndtgs easy to check that the collection of games
{g"};., are all equivalent with"g- g** = ¢ > ¢ forallk. There is also obviously a weak-topology
sensé in which the §s converge tog One can also check that the garhsagisfie{KL-T) vk <, and
violates(KL-T) for k==. g in this case is a "critical" g, as mentioned in Section 6, for the given chain

of games.H

“To see this, define the game g* to be the game*ge-defined on the type spacg THEADS,
TAILS}~ in the obvious manner: given any typé T, in game § ignore the coordinates k+1,
k+2,.... and proceed just as in gamie dNext for eacheT and ke, definev, to be equal te(f(z)),
the play induced by the vector of typeim game § Then it is easy to see that for each (1)
converges to_(t) in the weak topology.
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Example 8.2: (Acritical g for (KL-T)): Letl, A and ® be asin the matching pennies game of Example
2.1. Wenow definefor each k in[0,] agameg* ¢ G. Each of these gameswill be equivalent and will
have exactly the sametype-space. Further, therewill exist acritical k (actually k=1) suchthat (KL-T) will
hold for each k > 1 but will fail for eachk < 1. The examplewill also be such that if k and k' are close,
then the games g and g will also be close in the weak-topology sense mentioned in Example 8.1.

Definefor eachk andeachiinl, T = [0,1]". ThetypesinT,* are generated viathe distribution
over [0,1]" equal to the countably infinite product of uniform distributionsover [0,1]. DefineV n=1,2,....
andkin [0,«],

Ane = (U2)(U(n+1)<?) . (23)

The behavior strategy of player i of type t* = {1* 1, 5., 53, ...} & T isdefined asfollows: the
probability that she assigns to her first action (TOP for i=A and LEFT for i=B) at datenis

12 + Ay it 1" £[01/2)

o) = AL it e e (24

The probability assigned to her second action at date nistherefore 1-f, (t;). We supposethat each player
knowsthat thisishow thetypesand behavior strategiesare generated. Each player observesher owntype
but not the types of others. The probability that player i assignsto the event that player j#i chooses her
firstactionis (1/2)[1/2+ A, ] + (1/2)[1/2- A, ] = 1/2. Each player isthereforeindifferent between each
of her two actions, so the behavior strategies just defined are best-responses to each other.

When k=, A, =0 so each player-typeisrandomizing with probabilities 1/2 and 1/2 at each date.
When k=0, A, ,=1/2 so each player is choosing a pure strategy, which depends on her type. Hence, the
cases k=« and k=0 correspond to formulations F1 and F2 respectively of Example 2.1. For each k+0,
each player-type's behavior strategy randomizes over her actions at each date with probabilities which
converge, as the date n- «, to the vector (1/2,1/2). The speed with which the probabilities converge to
(1/2,2/2) isincreasing in k. For (KL-T) to hold, this convergence must be sufficiently fast. It turns out
that in the above example, the critical k for which thisistrueisk=1. In particular, whenk < 1, therate
of convergence is so slow that (KL-T) failsto hold. To see this, define o;,, to be the ratio of the true
probability of player i choosing agiven action at date n to the probability assigned by the beliefsof j#i

to that action (which, of course, is 1/2):
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- fin (1)I(1/2) if the first action occurs at date n (25)
S = [1-f; , (r; )]/(1/2)  if the second action occurs at date n
Then Yoo (Lro;)? = Yoo (1- 2 (5))? =4Yn, A% = Yoo U(n+1) K. Thissumisfinite for k>1
andisinfinitefor k <1. Applying (Shiryayev, Cor. 4 of p. 499), then shows that condition (KL-T) holds
for k >1 and failsfork <1. B

9. Appendix B: Proofs

Proof of Proposition 5.1: Fix any g= <T,{u;},.,,> in G. To obtain a gn G which is sparse and
equivalent to g, defing=0 and define the behavior strategy of player-type 6, to be KSR of the
marginal on Fof 1(.|6). In particular, the sparse formulation,igj obtained by integrating out any
randomization that was in the original types in g.

To obtain a gin G which is comprehensive and equivalent to g, one needs to perform at date -1
(i.e., before the game begins), all the possible future randomizations, and encode them in the type. The
details of this are as follows: Defifg=[0,1]", T,'=TxI'; and T=[]T,'. Let Unif[0,1] be the uniform
distribution over [0,1] and defing = ®,_,Unif[0,1]. We will laterconstruct the behavior

strategy, {t;"), of each player-type’ in game ¢ Define 1 o~ (resp. .(lr.') ) to be the probability

measure on F (resp. oy) Rhat assigns probability one ta) (resp. {z;')). A unique [I's B(T'XFx2)
may be constructed with the following three components: (a) Marg= (Marg 1) ® [[i & ;

(b) Marg- '(.|t) =1 . ; and (c) Margu''(.|t',f) =v(f). Similarly, a unique fic B(T'xFx2)
may be constructed using the components (a) and (c) above, replawiity . and i’ with ., and

replacing (b) with the requirement that Magg (.| t'=(t,y)) = (Marg ] [-,(.\r%) ® 1.(1.,)

We now construct the{t,')}, used above. Fix anyiin | anctT,. SinceH is countable we
can writeH={h*,2,h....}. Then for any integer m(£)(h™ is a probability measure over ghowing
how player-type; in game g chooses actions at histdty [Since Ais finite we may consider it an
,ﬂ}ozl,2 _____ A, with #Athe cardinality of A Fix an m and let Supg4)(h™) be the
support of {t)(h™), similarly ordered. For each™H, partition the unit interval [0,1] into distinct

ordered set, &{a,

exhaustive sub-intervals with tlieh sub-interval having lebesgue measure equal to the probability
assigned by;(t,)(h™ to the(-th action in Supp,;)(h™). LetP(t;,h™) denote this ordered set of sub-
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intervals. Each member of P,(t;,h™) isassociated with aunique actioninA;. For any t,'= (T;,Y; 1,Yi 2 Yi z:---)
eT;’ define fi(t;") by requiring it to choose at history h™ the action associated with the (-th member of
Pi(tr;,h™), where ( is the unique integer such that vy; ,, liesin the (-th member of P,(t;,h™).

We have completed the construction of g'=<T’ {1’ }..,i''> . It should be obvious that it satisfies

the conclusions of this proposition withmgg. B

Proof of Proposition 6.1: Fix any two games g and im G and suppose that)gg. Letl’;,t andt’ =

(t,y;)) forvy, € I', be as in Definition 5.1. In particular, andt,’ are two generic types in g and g
respectively, which share the same attribute vector. From the independence assumption 4.1 these two
player-types will also share the same beliefs about others. From condition 5.1(iv) the behavior strategy
of player typer; in game g is equal to the KSR of the mixed strategy obtained by some randomization
over the behavior strategies over player-typgg)(for yel';. Standard arguments show that player-type

T;'s behavior strategy is a best-response for her if and only if this is the case for all those of player-types
() fory, €1, (except possibly a set with zero probability). Hence optimization occurs in g if and only

if it occurs in d. An application of Proposition 5.2 therefore this proves the propodlion.

Proof of Proposition 6.2: (a) This follows immediately from the fact that ifgg’ then the ex ante
beliefs over F will be the same in both games g and g
(b) Fix any g =4 {1 },.,>and g =<T",{u;'} .., "> in G and suppose that:gg. Suppose’gpbeys
(GGH). By definition T=TxI" for somel'. It is easy to verify that if one probability measure is
absolutely continuous with respect to another on the cartesian product of two spaces then the same is
true of their marginals. Hence if gbeyg GGH), Marg XZ .||ﬁ1« Marg ®z Hiel, so g obey$GGH).

Next, suppose g obeys (GGH). Fix anyiinl. Then, Marg Margy,; . Since pand ' and also
K and [’ share the same marginal Bnthis implies that

Marg,l’ « Margy,’ . (26)

Following each history each player chooses an action independently of the others. So, recalling the

notation of eqn'¢4) and(5), for each date N history b (a,...,a),

Whie) = n=o [fi(m ) () @ ) IF 5 (M) (@1 0] (27)
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w'dha}w) = n=o [fi(@ ) (M) @ e )IIF 4 (M) (@ )] (28)

W ({h}) = noo [ (M) @ n)IIF i (M) (@i )], and (29)
k' ({hnd) = n=o [ (h)(@ eI (o) (@ )] - (30)
Define
(@)= M) e ang - €W (31)
H{hn} [57) ()

whenever the denominators of these expressions are positive, and define them to be equal to zero
otherwise. Eq.'€7) - (30) imply thatvN, h, e HY, andr,'eT;’ such that i({h}) #0 and K ({h\}|7)*0,
v = (') (32
It is easy to see that is the Radon-Nikodym derivative of Mang ' with respect to Makgy,” when the
two measures are restricted+d. Hence, using Shiryayev ((1984), Theorem 2, p.496)implies that
there exists an, isuch that lim_.. ry, = r. which is finite with probability one with respect td pnd .

From(32) this in turn implies that

limy.. ry(’) =r.. (33)
We will now argue that for each N and p.e.t/’,
Marg N W(ly) « Margh“ () (34)

To show this assume, on the contrary, that for sqnamt for a set of ' 's with |i’ positive probability,
the following is true: (iX27) is positive and (ii28) is zero. Noting that the products(2v) and(28)
share some common terms, (i) implies 128} is positive while (i) implies thaf30) is zero. Thisis a
contradiction tq26), which proveg34).

It is also easy to see thafs’) is the Radon-Nikodym derivative of Mang '(.|t;") with respect
to Marg, '(.|t;") when the two measures are restrictetito Eq.'s(33) and(34) and the Shiryayev
result mentioned earlier then imply that Marg(.|t") «Marg,'(.|7,") for &'’ a.e.r;’ . Since by
definition i’ and | have the same marginal opi, Tve conclude that Marg}i.,XZ "1« Marg TxZ V|
So d obeys(GGH). &

Proof of Proposition 6.3: Fix any two games g=T{u},,,u> and g=<T',{u’}.,,)'"> in G and
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supposethat g’ > g. Then, following the notation of Section 5, we may write T'=TxI". Fixanyiinl and
define for each (t,y)=(x;, v, t.i, 7.), the following measureson Z: P'(.|1,y)=Marg,l”'(.

P (Jty)= Marg; W'(.
obeys(KL-T). Then R.|t,y) « R (.|t,y) for & almost everyty) in T". We may integrate out thés

T,y) and

7,,v; ) (@and note that the latter dependsgy) Only through €;,y;)). Suppose g

conditional ont, to conclude that
I P(

y)dU(.]7) « [ P(|ty)dU(.]r) , for i almost everyr . (35)

The left hand side dB5) is equal to Marg W''(.|t). From the definition of j1 the marginals of pand
of i, on TXI; are the same, so the right hand sidgbf is equal to Marg p'(.|t; ). Hence,
Marg, W'(.|t) « Marg, '(.|7;), SO g obey$GGH). |

Proof of Proposition 6.4: We begin with the following claims:

Claim 1: A probability measure can assign pioge probability to at most countably many distinct
mutually disjoint sets.

Proof of Claim 1: Let P be a probability measure on a measure spre¥)( Fix an index set Q and
let {¢q} 4o be any collection of mutually disjoint measurable subset¥,afith P(p,)>0VvqeQ. Define

for any integer k>0, Q= {qcQ|P(p,)>1/k}. Q, cannot contain more than k distinct elements Q, for
otherwise the total probability of the uniong@f over gQ, would exceed 1. Since Q LQ, this

shows that Q must be countable. //

Claim 2: Leta:T, - Z andp:T, - Z be two Borel measurable functions. ket r, ® 1, be any
product measure on,XT,. Then there exists a countable gesuch that if 3{(t,,7,) ¢ T,XT, |
a(1)=P(t,) ¢y}, then=(J)=0.

Proof of Claim 2: Leta, B andx be as in the claim. Defing= {z in Z| n,("(z))>0}. If z#z' then
B(z) and B*(z’) are disjoint. Hence from Claim {,is countable. With thig, let J then be as in the

conclusion of this claim (Claim 2). Definet)(={t,in T, | (14,7,) € J}. We proceed to show that

,(J@,)) =0 Vr, in T,. (36)
So fix anyr, in T,. Clearly(36) holds if J¢,) is empty. So supposer,)(is non-empty. Thea(t,)&w.

31



Thisimpliesfirst that J(t,) = {1,]|a(t)=B(tx)} = B (a(r,)) and also that m,(B(a(t,))=0. Hence, eq. (36)
again holds. Eq. (36) and the fact that = is a product measure in turn proves that n(J)=0. //

Proof of Proposition 6.4 (Cont’d): By assumption there are at last two players, 1 and 2 say. Let z:Q
- Z betherandom variable on Q which defines the play path z in each state » in Q. Fix any 7,¢T, and
16T, and defineA(t)={zeZ: w({z=z }|1,)>0} and Cf,)={z Z : w,({z=2 }|1,)>0}. From Claim 1, Af,)
and C¢,) are both countable so we may writetMd{a'(t,),0(t,),a*(z),...} and C¢,)={c*(x,),
A(1,).5%(ty)....}. Next, definevt,={1},., in T, andvintegers mp™(t.,)= ¢"(r,) and B¢.)={B'(r.,),
B? (), B3(r,),...}. One may check that we may order the points in the sets so that faraeath o
andc™ (and henc@™) are measurable functions of their arguments. FixXamgd m. Note thgfi™(t.,)
depends om, only throughe,. Apply Claim 2 withe = (Marg T W) ® (Marg ]u*), a=a' andp=p™, and
countable and

W({={t} | o'(r) =B (t.) € ¥ for somel and m}) = 0. (37)

By assumption the game is comprehensive. HehceT there exists a unique play path)zf Z
resulting from that vector of types. Alsq§z=z(t)}|t) = 1. So ift={1}, €Tkt then W{z=z()} |7;)
>0 Viel, which in turn implies that zf=o'(t,)=p™ (r.,) for somel and m. By assumption (T, .;)=1, so

(37) implies that f{t={t} 4| zkt)¢ ¥ }) = 0, from which the proposition followsl

Proof of Proposition 6.5: (a) Fix any g=4,{4 }..,)’ >inG. Suppose that g obeys (6.1) 468A*).
Define another game’'s<T’,{u;'}.,,» L '> where we suppose each player's beliefs equal the "true"
distribution : in particular, setT=T,, &' = Viin |, and |1’ equal to the outside observer distribution
induced by {{},, . It should be clear that = u’ and that the game g@beys the common prior
assumption (CPA). Since g obg@PA") and under the independence assumption 4.1 beliefs about
others are independent of own-types, the belief of each playet;tyipehe same in g as it is if.g
Hence, since g obeys optimization (6.1) so too doesTdhe game ‘gtherefore satisfies the conditions

of the original Jordan (1995) result, so the conclusion of Proposition 6.5(a) holds 8inge 1= [’

and f = f", that conclusion also holds in g, which is what we seek to pilive.

32



Proof of Proposition 6.6: Any two equivalent gameswill have the same ex antetrue play f* and ex ante

beliefsf foriinl. The proof of parts (a) and (b) therefore follows from Lemma 6.1.1

Proof of Lemma6.1: Fix any g= <T,{l;}.;» & > and ¢g=<T’ {u';}..,i""> in G and suppose that g

g. Then pand ' have the same marginal & From the independence assumption 4.1 and 5.1(iii) and
(iv) we conclude that conditional &p |, and_t have the same distribution over F and therefore fver
Hence pand_ have the same marginal distribution@®Z. This implies (D)=,(D) for any D=

0, XZ, so g obeys ;hbf and only if g does. Apply Proposition 5.2 to conclude thataiisfies TIGER.
Similar arguments imply thaf bbeys TIGER. R

Proof of Proposition 6.7: Fix any g= 4 ,{i},.,"> and g=<T" {1 "}, "> in G and suppose that g
g. Then, following the notation of Section 5, we may writeTkI". We concentrate on gamefgr now.
Fix any i in I,e > 0 and date n. Defirn@'(i,e,n) = {® in Q'| | v(f,,(t7)) - v(f @)l < € . The
inequality below follows from the fact that the left hand side is lessetbanQ’(i,¢,n), and, since is
a probability, is less than one 9n(i,&,n)"

H V(fz(n)(TvY)) - V(‘I:iz(n)('ci!yi))H <g + 1!2’(i,s,n)c (38)

(where the superscript ¢ denotes the "complement" of the set aisdtte indicator function on X).
Hence upon integrating overwith respect to [(.|t,z(n)) and noting that'tand | have the same

marginal ovet’;, we may conclude that

1 v (T))du (.

wz(m) - I V(@) dw (nzm)l <e + @@ Gen) [tzM). (39

Suppose that'@beys the KL93 conclusion. Then 1 Z(R’,,) = W' (Niy Neso Unier Mo 27 (1,€,0)). This

el

implies that for each i and> 0, i'(Q’(i,e,n)) -~ 1 as n- «. So from(39) we conclude that

(O Nesoniea N {1 [ (@)l ([z(n) - [ r V(o) dw/'(lmz) <& ) =1. (40)

This is precisely the statement that g obeys the KL93 conclulon.
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Proof of Proposition 6.9: (a) From Proposition 6.1 and Lemma6.2 we know that optimization and
EPLAC obey TIGER. The required monotonicity therefore follows from the monotonicity result of

Lemma6.3. (b) The statement in (b) isthe counter-positive of (a). W

Proof of Lemma 6.2: Fix any g= <T {4 },,1"> and ¢g=<T"{u'}..,"> in G and suppose that g g.
Lett (respectively,y)) denote a generic type vector in g (resp. §Ve continue the proof in two steps,
(a) and (b) below. Applying Proposition 5.2 then proves this lemma.

(@ If g’satisfiesEPLAC then sotoo doesg: Suppose ‘gsatisfies EPLAC. Fix anyehl andteT

and suppose thatf(z))(C(h))>0. Then there exists a setytsf with |i’-positive probability such that
v(f(z,7))(C(h))>0. Since gsatisfies EPLAC, this implies that(f'(z; ,y,))(C(h))>0, for a set of's with

1’- positive probability. Integrating out thgs implies that/(f (t; ))(C(h)) > 0. So g satisfies EPLAC.
(b) If g satisfies EPLAC then sotoo doesg“ It is easy to see EPLAC holdsany game g if for

that game for {{ almost every 1(y)=(x;,t..v:,v.), for each n=0,1,2, ..., and for each history h of length n

that occurs with [(.|t,y) positive probability,

frr)()({zw=a}) >0 implies f(r.v)(N)({z.=a}) >0 VvainA. (41)

So fix any such n, h arii=(@3,a,) eéA. Suppose that the first inequality @fl) holds for a set oft(y)'s

with positive [’ probability. Since fy)(h)({z,..=a}) = [fi(x,v) (") ({zi ns=aN] [f .(ziv) (M) {2 e =aD)],
this implies that

fi (N ({zn=a}) >0 . (42)

Next, integrating the first inequality ¢41) overy implies that f¢)(h)({z,.,=a}) > 0, so if g satisfies
EPLAC then 'z, )(h)({z..,=a}) > 0, and in particular'(t;)(h)({z.,..,=a}) >0. Since i's beliefs about j are
independent of i's type, this implies thét fr)(h)({z., ..;=&; }) >0. Combining this witt{42) implies the
right hand side of4l) . So d obeys EPLACH

Proof of Lemma 6.3: The proof is almost identical to the proof of Proposition 6.7 so is omilled.



10. References

Aumann, R. (1964):"Mixed and Behavior Strategiesin Infinite Extensive Games,” Advancesin Game

Theory, Annals of Mathematical Studies, 5, 627-650.
(1987):"Correlated Equilibrium as an Expression of Bayesian Rationality,” Econometrica,

55, 1-18.

Aumann, R.and A. Brandenburger (1995):" Epistemic Conditionsfor Nash Equilibrium,” Econometrica,
63(5), 1161-1180.

Battigalli, P.and D. Guaitoli (1988):" Conjectured Equilibrium and Rationalizability inamacroeconomic
game with incomplete information,” Bocconi University.

Battigdli, P., M. Gilli and C. Molinari (1992):"Learning and Convergence to Equilibrium in Repeated
Strategic Interactions: An Introductory Survey," forthcoming in Ricerche Economiche 3-4.

Binmore, K. (1991): "Fun and Games," D.C. Heath, Lexington, Mass.

Harsanyi, J.C. (1967,1968): "Games with Incomplete Information Played by Bayesian Players,"
Parts1,I1,I11, Management Science, vol. 14, 3,5,7.

-------------- (1973):" Games with Randomly Distributed Payoffs. A New Rationale for Mixed-
Strategy Equilibrium Points," pp. 1 - 23.

Jackson, M., E. Kalai and R. Smorodinsky (1997):"Patterns, Types, and Bayesian Learning,"
Manuscript, Carlifornia Institute of Technology; forthcoming Econometrica (1998).

Jordan, J. S. (1991): "Bayesian Learning in Normal Form Games," Games and Economic Behavior,
3, 60-81.

-------------- (1995): "Bayesian Learning In Repeated Games," Games and Economic Behavior, Val.
9, No. 1, 1995, pp. 8-20.

-------------- (1996):"Bayesian Learning in Games: A NonBayesian Perspective,”" in "The Dynamics of
Norms," (eds.) C. Bicchieri, R. Jeffrey, and B. Skyrms, Cambridge University Press.

Kalai, E. and E. Lehrer (1993a):"Rational Learning Leads to Nash Equilibrium,” Econometrica, 61,
1019-46.

--------------- (1993b):" Subjective Equilibrium in Repeated Games,” Econometrica, 61, 1231-40.

Kuhn, H. (1953):"Extensive Form Games and the Problem of Information,” Annals of Mathematics,

Study No. 193-216.

Lehrer, E. and R. Smorodinsky (1997):"Repeated Large Games with Incomplete Information,”

35



Games and Economic Behavior, Vol. 18, No. 1, 1997, pp. 116-134.

Nachbar, J. (1997): “Prediction, Optimization, and Learning in Repeated Games,” Econometrica, 65(2),
275-310.

Nyarko, Y. (1993):"The Typesof aBayesian Equilibrium" C.V. Starr Working Paper #93-36, New
York University.

--------- (1994):"Bayesian Learning in Leads to Correlated Equilibria in Normal Form games,”
Economic Theory, 4(6), 821-841.

--------- (1997a): "Convergence in Economic Models with Bayesian Hierarchies of Beliefs," Journal of
Economic Theory, 1997, 74(2), 266-296.

--------- (1997b):"Bayesian Learning Without Common Priors and Convergence to Nash Equilibrium,”
forthcoming, Economic Theory.

Sandroni,. A. (1995a): “Does Rational Learning Lead to Nash Equilibrium in Finitely Repeated
Games?” Manuscript, Northwestern University.

--------- (1995b): “Necessary and Sufficient Conditions for Convergence to Nash Equilibrium: The
almost Absolute Continuity Hypothesis." Manuscript, Northwestern University.

Shiryayev, A.N. (1984): "Probability,” Springer-Verlag.

Smorodinsky, R. (1995): “The Absolute Continuity Hypothesis and Large Type Sets,” Northwestern

University.

36



37



