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ABSTRACT.  Games with incomplete information or randomness in the moves of others typically
have many decision-theoretically equivalent formulations of the type space.  These different
formulations correspond to different ways of encoding the realizations of randomizations in the type of
a player.  Solution concepts, assumptions or paradoxes in games should be independent of the
formulation of the game used.  I refer to this axiom as TIGER, for "Type Independence among Games
which are equivalently Re-formulated."  Results like convergence of beliefs to a Nash equilibrium (e.g.,
Jordan (1995)), obey TIGER.  On the other hand, I show that results on Bayesian Learning and
convergence of true play to Nash equilibrium (e.g., Kalai and Lehrer (1993a)) violate TIGER.  Similarly
many of the paradoxes in the learning literature (e.g., on the possibility of having optimization and
prediction at the same time - Nachbar (1997)) disappear when we require TIGER to hold.  The message
is that in games with incomplete information, (i) the appropriate solution concept is Nash equilibrium
of beliefs rather than "true" strategies, and (ii) the type-space formulation is important for other solution
concepts.  As regards (ii), we note that there is one formulation of the type space under which the Kalai
and Lehrer (1993) assumptions always imply that type space is countable.    
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1Note well that what we are claiming here has nothing to do with the Allais or other framing
paradoxes.  The Allais paradox shows that two different "frames"  or ways of presenting information
can lead to different behavior.  Here we are considering different frames in the mind of a player that
lead to the same behavior.  
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1. Introduction
Games with incomplete information or randomness in the moves of others typically have many decision-

theoretically equivalent formulations of the type space.  For example, suppose you believe that your

opponent is going to choose one of two actions with equal probability.  Your beliefs could be

"formulated" in any one of the following two ways: (i) you could believe that your opponent is

randomizing with equal probability;  or (ii) you could assign equal probability to your opponent being

one of two types - the type who chooses the first action (non-randomly) or the type who chooses the

second action.  To players within the game, the different formulations of the game change neither their

beliefs nor their play.  These different formulations are equivalent in terms of "decision-theory" since

under each beliefs about others and payoffs are unaffected.  This paper will formalize this notion of

equivalence of type-reformulations, and study an axiom which requires solution concepts in games to

be independent of the formulation of the game used.  We then use this formalization and the axiom to

study some of the results in the rational learning literature.   

Among game theorists there are many who argue forcefully that people do not really use mixed

strategies - instead mixed strategies represent players’ conjectures.  Other game theorists do not mind

the use of mixed strategies.  These differing perspectives are really arguments over the appropriate type-

formulation of the game: in the former there are many types of players each choosing a pure strategy;

in the latter there may be only one type of player - one who chooses a mixed strategy.  

Simple questions like "is the game in a Nash equilibrium?"  or "do players learn to play a Nash

equilibrium" will be impossible to answer since the answer will depend on the type-formulation under

consideration.  This is because there is no unambiguous notion of what constitutes the "truth."  Instead

it will be in the eye of the beholder (actually, the game theorist).  The true type of a player is ambiguous

because that player’s type can encode different amounts of the outcomes of randomizations.  How would

one go about determining what players are "truly" doing?  Since the different formulations of true player

are not decision-theoretically relevant, they may be hard to test in a "laboratory" in the same manner one

could possibly elicit beliefs1. 

For all of the above reasons, one may want to require solution concepts, assumptions or

paradoxes in games to be independent of the formulation of the game used.  This independence enables
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one to avoid taking a stand on mixed versus pure strategies, or on decision-theoretically irrelevant issues.

I call this axiom TIGER, for "Type-Independence among Games which are Equivalently Re-

formulated."  The message of this paper will be the following:  (i) if one is interested in satisfying the

axiom TIGER, then one has to move away from concepts of equilibrium in strategies and move instead

toward concepts of equilibrium in beliefs or conjectures; and (ii) even if one is not interested in

satisfying the axiom TIGER per se, the type-space formulation is a very important and often ignored part

of the specification of incomplete information games.

A review of the recent literature on Bayesian learning in repeated games highlights this issue.

In the rational learning literature there are two broad approaches.  The papers of Jordan (1991, ’95) and

later Nyarko (1994, ’97b) where there is convergence of beliefs to a  Nash or subjective equilibrium take

the first approach.  The vast majority of the literature, however, follows the second approach and

includes Kalai and Lehrer (1993a) (henceforth KL93), Lehrer-Smorodinsky (1997), Nachbar (1997),

Sandroni (1995a,b) and many others.  The second group of papers is concerned with the convergence

of true strategies to an equilibrium.

The conclusions of papers by Jordan and Nyarko, which provide results on convergence of

beliefs to an equilibrium, all obey TIGER.  On the other hand, to get conditions for convergence to an

equilibrium, the KL93-type papers impose conditions which must hold for each true vector of types of

players.  Because the concept of  truth is ambiguous, so too is whether the KL93 type assumptions hold

for a given game.  The KL93 assumptions may hold for one type-formulation of the game, yet fail in

another.  This is despite the fact that the formulations are decision-theoretically equivalent.  On the

positive side, the strength of the KL93 result is the following: if the KL93 assumption holds for a given

formulation of the type-space, there will be convergence to an equilibrium whose meaning is determined

by that given formulation of the type-space.  I argue simply that the type-space formulation is

ambiguous, and in particular that two reasonable game theorists can argue about what is the correct

formulation for a given game.  

This ambiguity in what constitutes the "truth" is also an issue in Nachbar (1997).  Nachbar shows

that in some games a paradox may arise from an inherent inconsistency between prediction of the true

play and optimization.   As in KL93, Nachbar’s definitions (in particular his definition of prediction)

requires a specification of the true strategies; it may therefore hold in one game but fail in another

equivalent one.   Hence the paradox in Nachbar (1997) violates the axiom TIGER.  Furthermore, as we

shall show, if one goes from prediction of true strategies to prediction of beliefs, TIGER will hold.  All

this illustrates our first message: to satisfy TIGER one should use notions of equilibrium of beliefs rather



2For related work on type-space representations and Bayesian learning, see.  Jackson et. al.
(1997).
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than of true strategies. 

Regardless of your stand on whether the axiom TIGER should hold and equilibrium in beliefs

is appropriate, my second message is that the type-space formulation is important2.  In Section 6 below

I show that for the KL93-type results to hold, the type-space formulation must be sufficiently coarse -

meaning that a type should not encode too much information. Specifically, I show that for any collection

of equivalent games which are linearly ordered in terms of their type-refinement - from coarsest to finest

-  there will exist a critical game such that all coarser games obey the KL93 type assumptions and all

finer ones will violate it.  Similar monotonicity results hold for the Nachbar paradox.

Related to the above, I prove a result which has been the subject of some controversy in

interpreting the KL93 results.  Many researchers believe that the KL93 assumptions imply the

countability of the set of types - indeed, this has already appeared in the published literature!  Even when

a player has only two actions in each period, the set of possible infinite-horizon plays is uncountable.

A restriction to countably many possible types of play is therefore a strong one.  By using the framework

of type-formulations, I am now able to answer the question as regards countability and the KL93

assumptions.  The KL93 assumptions by themselves do not immediately imply countable types.

Everything, however, depends upon the type-formulation.  Suppose that we are in what we refer to as

the "comprehensive" formulation of the game, where each player-type chooses a different pure strategy.

Then for the KL93 assumption to hold in this formulation, the set of types must be countable. 

The paper proceeds as follows:  In Section 2, I provide a leading example illustrating all the

issues discussed in this paper.  My call for the use of equilibrium in beliefs is not new in the literature -

although I believe the arguments presented here for the use of equilibrium in beliefs are novel.  Section

3 comments on this literature.  That section also points out the issues discussed here, as regards a certain

arbitrariness in the specification of the type space, also arises in the standard definitions of a Bayesian

Nash equilibrium.  Section 4 contains basic notation, while Section 5 discusses type-reformulations of

a game and presents the axiom TIGER.  Section 6 discusses the rational learning literature.  Concluding

remarks are presented in Section 7.  Section 8 is Appendix A and contains examples where we compute

critical type formulations for the KL93 assumptions that we mentioned earlier.   Appendix B in Section

9, contains all the major proofs.

2. An Example to Illustrate Everything 
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Example 2.1:   Consider the following "matching pennies" stage game:

                          Player B 
LEFT RIGHT

Player A
     TOP 1,-1 -1,1

BOTTOM -1,1 1,-1

We shall describe two different formulations of the game, differing only in the specification of

the type-space and the behavior strategies chosen.  To fix the main ideas we will first discuss the one-

period version of the game.  We will then go to the infinite-horizon model and show that the same

conclusions are obtained there,  even with "learning." 

Consider the following two type-formulations for the one-period model:

f1:  Player A (resp. B) chooses a behavior strategy which selects actions TOP and BOTTOM (resp.

LEFT and RIGHT) with equal probability.  Each player knows the behavior strategy being used

by the other. 

f2:   Let A be a realization from a coin-tossing experiment where an outcome from {HEADS,TAILS}

is chosen with equal probability.  Hence A is an element of {HEADS,TAILS}.  Let B be

another realization from another coin-tossing experiment where an outcome from

{HEADS,TAILS} is chosen with equal probability, but which is independent of the coin from

which   A  was obtained.  At date 0 Player A is told of A (and is not informed about B) and

player B is told of B  (and is not informed about A).  We may consider A to be player A’s "type"

and B to be player B’s type.  Suppose that each player knows how the types are drawn.  Consider

the following play of the game:  Player A chooses TOP or BOTTOM according to as A is

HEADS or TAILS.  Similarly, Player B chooses LEFT or RIGHT according to as B is HEADS

or TAILS.  (A nicer story is to think of a player as being one of a pair of twins.  Each twin has

a birthmark which says either "HEAD" or "TAILS."  The twin’s birthmark is her "type."  Each

twin chooses an action as a function of her type or birthmark as described above.  Player B is

similarly one of a pair of twins. A game is an encounter between one twin of A and one twin of

B.)  

  In f1 each player has only one possible type.  In f2 each player is one of two possible types.
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In f2 all we have done is to use "types" to encode the outcomes of  randomizations.  Alternatively, we

may think of types in f2 as being used to purify the mixed (or randomized) actions in f1. Note the

following:

a. Each player’s belief about her opponent will assign probability 1/2 to each of the opponent’s

actions being played.  This is true for each player-type and regardless of which of the two

formulations, f1 or f2, is used.  Hence, regardless of the formulation, these beliefs of players

form a Nash equilibrium. 

b. In  formulation f1 it is immediate that players’  true actions form a Nash equilibrium - there is

only one vector of types, with each player-type mixing at each date with equal probability.  In

formulation f2, each player-type is choosing a pure action.  Since the matching pennies game

does not have a Nash equilibrium in pure strategies, the vector of actions of any vector of player-

types does NOT constitute a Nash equilibrium.  In particular, in f1 "true" play is a Nash

equilibrium, while in f2 it is not!  The answer to the question "are players’ actions a Nash

equilibrium?" cannot therefore be answered unambiguously unless a statement is made as to the

formulation of the type-space being used.

c. To all intents and purposes, the two formulations represent the same "game."   In particular they

are decision-theoretically equivalent (and this will be made precise later).   Suppose these

players are happily playing in the manner described above.  The players are indifferent and

oblivious to the names that will be assigned to them, i.e., whether they are one of one or one of

two possible types.  Even though they are content, game theorists, who may disagree as to the

type-formulation, may have lifelong fights as to whether or not they are playing a Nash

equilibrium in strategies!  The notion of what precisely is a type is completely in the mind of the

modeler; players may not even be thinking in terms of types, only actions. 

d. It should be clear that f1N and f2N are not the only formulations of the type-space to the above

game.   Define f3N to be the situation where a fair coin is tossed, if it is HEADS the player plays

first action with probability 2/3 and the second with probability 1/3; and if it is TAILS the player

reverses the probabilities of the two actions.  This is yet another decision-theoretically equivalent

formulation of the game.  

One may be tempted to conclude that in the infinite-horizon model all these problems disappear
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because of some sort of "learning."  They do not.  We illustrate this below and provide additional

remarks pertaining to the rational learning literature.   Consider the following formulations, analogous

to f1 and f2: 

F1:  Player A (resp. B) chooses a behavior strategy which picks actions TOP and BOTTOM (resp.

LEFT and RIGHT) with equal probability in each period, independently of the past.  Each player

knows the behavior strategy being used by the other. 

F2:   Let A be a realization from infinitely many independent and identical coin-tossing experiments

where an outcome from {HEADS,TAILS} is chosen with equal probability.  Hence A is an

element of {HEADS,TAILS}4.  Let B be another realization from an i.i.d sequence of coin-

tosses, {HEADS, TAILS}4, which is independent of the sequence from which   A  was obtained.

At date 0 Player A is told of the entire sequence A (and is not informed about B) and player B

is told of B  (and is not informed about A).  We may consider A to be player A’s "type" and B

to be player B’s type.  Suppose that each player knows how the types are drawn.  Consider the

following play of the game:  at date n Player A looks at the n-th coordinate of her sequence of

coin-tosses - if it is a HEADS she plays her first action, TOP and if it is a TAILS she plays her

second action, BOTTOM.  Similarly, if the n-th element of B is HEADS player B plays the

action LEFT at date n and otherwise she plays action RIGHT.  Suppose further that each player

knows that the other is choosing actions via this rule.

Just as in the one-shot game we have the following: (i)  Regardless of the formulation, the beliefs

of players (of each type) form a Nash equilibrium.  (ii) In formulation F1 players’  true behavior

strategies form a Nash equilibrium.   In formulation F2, each player-type is choosing a pure strategy, the

true strategies (or limit points of continuation true strategies) do not constitute a Nash equilibrium for

the (zero discount factor) infinitely repeated matching pennies game.  (iii) The two formulations are

decision-theoretically equivalent as we mentioned in (c) above.  (iv)  There are a zillions of other

equivalent type-formulations of the game, as in (d).  In the infinite-horizon model, there are further items

to be noted:

(v) Absolute Continuity Conditions:   It is easy to show that the ex ante absolute continuity

conditions required to get the Jordan and Nyarko convergence of beliefs results will hold here,
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regardless of which formulation, F1 or F2,  is used.  Indeed,   both formulations obey the

common prior assumption.  In Section 6 we show, as this example illustrates,  that the Jordan

and Nyarko assumptions and conclusions obey our axiom TIGER.  The absolute continuity

conditions required in KL93 on the other hand are in ex post terms (i.e., they must hold for each

vector of types). Formulation F1, with only one vector of types, can be shown to obey the KL93

assumptions (and hence the KL93 conclusion on convergence of true play).   Formulation F2,

with a continuum of possible types, can be shown to violate the KL93 assumptions and

conclusions (beliefs assign probabilities (1/2,1/2) to each action at each date, while each player-

type chooses a pure strategy).  Hence the KL93 assumptions and conclusions violate our axiom

TIGER.  

(vi) On Nachbar (1997):  Nachbar (1997) has pointed out that sometimes prediction of the "truth"

and optimization may be in conflict.  The repeated "matching pennies" game above is an

example covered by the Nachbar paper (indeed it is the leading example used in that paper). His

conclusion, however, depends critically upon the formulation of the game used.  Optimization

holds in both formulations F1 and F2 of the game.   Nachbar’s definition of prediction, however,

only occurs in formulation F1.  Hence the conflict between optimization and prediction of the

truth occurs under formulation F2 but does not occur under formulation of F1.  In particular,

under formulation F1 the paradox disappears completely.  This shows that the Nachbar paradox

violates the axiom TIGER.   We will show in Section 6 that there if instead we insist on

prediction of beliefs then both optimization and prediction will be easily obtained, and further

they will obey TIGER.  

3.  Some more Comments and Related Literature
It has often been suggested to me that the issues relating to the ambiguity in the definition of a

type can somehow be resolved by appealing to the Harsanyi (1967,68) concept of a Bayesian Nash

equilibrium (henceforth BNE).   On the contrary, the problems discussed here are also relevant in the

definition and the use of the BNE concept. Harsanyi’s definition a Bayesian-Nash equilibrium

presupposes the existence, for each player i, of a type space Ti and a mapping i:Ti 6 Fi from that player’s



3See Aumann (1987) and Aumann-Bradenburger (1995) for further comments and
references.

8

type space Ti  to that player’s strategy space Fi.  The vector of these mappings, { j}j  for all the players

j are assumed, in the Harsanyi’s definition, to be known by each player, and given this knowledge each

player maximizes expected utility.  Harsanyi, however, does not give too much guidance as to what the

type space should be.   On one extreme a type could specify only a player’s payoff function (this is

related to the notion of a sparse type used in this paper).  On the other extreme a type could specify an

individual’s payoff function and behavior strategy (and beliefs about others’ payoffs and strategies, and

beliefs about beliefs, etc).  (This is related to the concept of a comprehensive type used in this paper.)

Under the former notion of a type, the concept of a BNE provides tight predictions on the game (e.g.,

if the attribute vector is common knowledge the BNE becomes a Nash equilibrium).  Under the latter

notion of a type, the concept of BNE implies nothing other than expected payoff maximization given

beliefs (so that, e.g.,  if the payoff matrix is common knowledge the only prediction from a BNE is that

players are not using strictly dominated actions).   (See Nyarko (1993) for details.) The main point of

this paper is that care should be taken whenever using a model where "types" are used to model

imperfect information.  Precisely the same caution is required with the Harsanyi BNE!

This paper is also related to the argument over mixed versus pure strategies.  Many have argued

that players do not really use mixed strategies.  Instead they choose certain, non-random actions at each

date.   Mixed strategies then become  representations of the beliefs of players.  This argument has been

made by Harsanyi (1973), Aumann (1987) and many others who study the "decision-theoretic"

approaches to game theory.3   This argument has also been eloquently made by Binmore (1991, p.286).

In this paper we provide yet another justification for the interpretation of mixed strategies as beliefs:

the need for the consistency across type formulations, formalized in our main axiom TIGER. 

Our work is related to the main theorems of Aumann and Brandenburger (1995), who provide

epistemic conditions for beliefs or conjectures to be Nash equilibria.  It should be clear that even under

the hypotheses of their main theorems, it is possible for the actual play of the players not to be a Nash

equilibrium even though the beliefs are.  This distinction is captured in formulations F2 as opposed to

F1 of Example 2.1.  One could interpret the Aumann and Brandenburger (1995) paper as giving

epistemic conditions for why we should study Nash equilibrium of beliefs as opposed to actual play.

As suggested in this paper, working with beliefs as opposed to actual play enables one to achieve the
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consistency formalized in the axiom TIGER. 

4.  The Repeated Game Structure
I is the finite set of players.  The set Ai represents the finite set of actions available to player i at

each date n=1,2,... , and  A/J i I Ai.   
 N / AxAx..xA (N-times)  is the set of histories of length N; 

0  is the singleton set consisting of the null history, which we denote by h0; /U4

n=0
 n  is the set of all

finite histories;  Z / J4

n=1 A  is the set of infinite histories or play paths.  The projection of z  Z onto the

period n coordinate is denoted by  zn  while the projection onto the coordinates of periods 1 through n

is denoted by z(n).  For any i in I, zi,n and zi(n) are the i-th coordinates of zn and z(n) respectively.  Perfect

recall is assumed:  when player i is choosing her date n+1 action she will know the date n history z(n).

Given any metric space X, we let -(X) denote the set of probability measures defined over

(Borel) subsets of X.  Unless otherwise stated the set -(X) will be endowed with the weak topology.

Given any f F, (f)  -(Z)  denotes the probability distribution over Z induced by f.  The set of behavior

strategies for player i is the set Fi / {fi:    6 -(Ai)} and F/Ji I Fi .  The space F is endowed with the

topology of weak convergence. A  pure strategy for i is any behavior strategy which takes values on the

vertices of -(Ai).

Each player i in I has an attribute vector which is some element i of the set i, assumed to be

a compact subset of a finite dimensional Euclidean space.  ui: ixA6â is player i’s within-period

continuous and bounded utility function which depends upon her attribute vector, i, as well as the vector

of actions, a  A, chosen by the players.  Each player i knows her own attribute vector i but does not

necessarily know those of other players, j for jûi.  Player i has a discount factor which is a known

continuous function, i: i6[0,1), of the player i’s attribute vector.  Specifically, i = i
#x[0,1), where i

#

f âAi  represents the set of stage game payoff vectors and where i: i 6 [0,1) is the projection of i onto

its second coordinate, and represents the discount factor.  Any set of this form will be called an attribute

vector space for i.  Define Ui: ixZ6â by Ui( i,z) /3n
4

=1[ i( i)]
n-1ui( i,zn) and Vi: ixF6â by Vi( i,f) / IZ

Ui( i,z)d (f).

Each player i is characterized by a type, i, which specifies, among other things, that player’s

attribute vector, i.  A type-space for i is any set Ti= ixTi
# where i is an attibute vector space and  Ti

#

is a complete and separable metric space.  (This definition allows Ti= i.)  We let i( i) denote the
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attribute vector of player i of type i, so that i(.) is the projection of Ti onto i.  A type-space will be any

/J i I i , where Ti  is a type-space for i.

If X is a cartesian product X=YxZ and   -(X),  we denote by MargY  the marginal of  on Y.

Define4

  /   x F x Z   . (1)

We shall say that a probability measure µ-( ) respects    if MargZ µ(.* ,f)  = (f) for µ-a.e.  (,f) xF.

An ex ante subjective belief for a player i is any probability µi over   which respects . To see how an

ex ante subjective belief may be obtained, we note here that it constructed from the following three

building blocks:

(i)  (Beliefs about others)  Each player-type i  has some belief over the types and behavior strategies

 of others.  This defines Marg            µi(.* i) .                                                            T-ix F-i

(ii) (Own Behavior Strategies)  Each such player-type i chooses some behavior strategy fi( i). This

defines Marg      µi(.* i) , which assigns point mass to fi( i).          Fi

(iii ) (Ex ante distribution of types)   Each player i has an ex ante distribution over the set of own-

         types in Ti.  This defines Marg     µi.                                             Ti

The product of the measures in parts (i) and (ii) produces a measure over T-ixF conditional on i.

Combining this with (iii) results in a measure over TxF.  Using the measure  then results in a measure

over .  This is player i's ex ante subjective belief.  Part (iii) is required primarily for the measure-

theoretic technicalities.  One may object to the requirement in (i) on the grounds that players should be

expected to have beliefs over the behavior strategies of others and not over the types of others.  This is

a valid objection. We discuss this in Section 5, and argue that this objection supports the use of  our main

axiom, TIGER.  

If k is a probability measure on a complete and separable metric space Xk,for k=1,2,...K, we let

qK
k=1 k denote the product of the measures {k}

K
k=1 on the cartesian product JK

k=1Xk.  We impose the

following assumptions on µi:

Assumption 4.1 
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 a. (independence of  strategies)  Marg      µi(.
 )    =    J j I Marg       µi(.
 j)    for µi a.e.   ={ j} j I.                                                                 F                                     Fj   

b. (independence of  types)  Marg  µi =J j I [Marg     µi].                                                                                 j

Assumption 4.1 says that player i believes that (a) conditional on players' types, players choose

behavior strategies independently and (b) that players' types are drawn independently.  The set of beliefs

of players that we allow is therefore the set

B( ) = {µ  -( )*µ respects  and satisfies Assumption 4.1 (with µ=µi )}. (2)

Given any sets {Xi} i I and {Yi} i I, and any functions  fi:X i 6 Yi for i I, we define X/Ji IX i,

X-i/JjûiX j , and f-i(x-i) / Jjûifj(xj).  For each iI, define the equivalence relation, ~ k , on Fi as follows:

éfi and fiN  Fi, fi ~
 k fiN if éf-i F-i, (fi,f-i) = (fiN,f-i). Let Fi

~ k denote the set of equivalence classes of 

 ~ k .  From Kuhn's (1953) Theorem  (see Aumann (1964) for the infinite-horizon case) þ i:-(Fi)6

Fi
~k such that for any (behavior strategy mixture) i -(Fi), é fi i( i) and éf-i F-i, the probability

distribution on Z induced by i and f-i is equal to (fi,f-i).  The behavior strategy fi i( i) is said to be

realization equivalent to the mixed strategy i.  We refer to fi as the KSR (for "Kuhn Strategic

Representation") of i.  We shall write fi = i( i) when we mean that "fi is any member of the equivalence

class of i( i)." 

Fix any subjective belief µi  B( ) of player i.  Define 

fj
i  = i(Marg     µi(.)) éi,j    and    f i  /  {f j

i} j I. (3)
                                                                        Fj  

Under the independence assumption 4.1, each type of player i (µi -a.e)  has the same belief about player

jûi equal to the marginal of µi(.) on Fj.  Hence for iûj, fj
i  is the KSR of the belief of each type of player

i about player j's behavior strategy.  Next define

fi( i) / {f i( i),f
i
-i} . (4)

The only difference between  fi in (3) and fi( i)  in (4) is in the i-th coordinate - the latter conditions on

the type i while the former does not.  The behavior strategy profile fi( i)  is the KSR of player-type i's

beliefs.  The behavior strategy vector fi  is the KSR of someone who, like player i, has  beliefs given by
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µi , but who, unlike player i, does not observe the own-type i.  (To illustrate the difference consider

Example 2.1.  Let fA,0.5 and fB,0.5  denote the strategies chosen by A and B in formulation F1 - randomize

at each date with equal probability - and define f0.5=(fA,0.5 , fB,0.5).  In both formulations F1 and F2,  fi =

f0.5  for all i. In formulation F1, which has only one vector of types, fi( i) /f0.5 éi; in formulation F2,

fi( i)={f i( i), fj,0.5} where jûi and fi( i) is the pure strategy determined by i  {HEADS,TAILS} 4 as

described in example 2.1.)

Fix a collection of ex ante beliefs {µi} i I  and let {fi( i)} i I  denote the behavior strategies chosen

by the vector of player-types ={ i} i I.  We now define a distribution µ*  B( ), the outside observer’s

belief induced by {µi} i I.  In the literature this is often defined as the "true" distribution, and is the measure

with respect to which theorems are proved.  The measure µ*  is defined to be the unique element of B()

such that Marg              µ
* = qi I Marg          µi.  In particular, µ* is the ex ante belief of an outside observer

                        TxF                        TixFi 
who knows how players choose behavior strategies as a function of their types, and for each i in I  has

the same ex ante beliefs about each player i's own-types as player i herself.  Define f* to be the KSR of

µ* not conditioning on types (and observe that f* below is the same as fi in (3) above except that µ*

replaces µi):

                  fj
* /  i(Marg      µ* ) éj I             and            f *  /  {f j

*} j I. (5)
                                                                Fj

Of course the KSR of µ* conditioning on types ={ i} i I is precisely the vector {fi( i)} i I   of behavior

strategies chosen by those player-types.

5.  Equivalent Type-Reformulations

5.1. Consider as fixed the following: the set of players I, the attribute vector space, , and the space

of actions A (and hence the spaces  F  and Z).  The set G below is the set of all "games" g which can be

constructed given the primitives {I, ,A}:
 

G  /  {g= < , {µ i} i I, µ
* >*    is a type-space;  {µi} i I  Ji IB( ) where  / xFxZ; and µ* is the 

outside observer belief induced by {µi} i I  }.  (6)

Definition 5.1 (Equivalent type-Refinements).  Fix any pair of tuples g=<,{µ i} i I,µ
*> and

gN=< N,{µ Ni} i I,µ
*N> in G. We say that  gN is an equivalent type-refinement of g (or g is an equivalent type-
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coarsening of gN)  and we write  gN  ë g, if  there exist sets  { i}i I  (each a complete and separable metric

space) such that éi I, i i, and i i, 

i. (type-refinement) Ni= ix i  ;

ii. (same own payoffs)  i( iN) = i( i)   when iN=( i, i)  ;

iii. (same beliefs about others)  Marg       µiN(.* iN=( i, i))  /     Marg      µi(.* i);                                                                          F-i                                              F-i

iv. (same expected own play) Marg      µiN(.* i)  /  Marg      µi(.* i);  and 
                                                                        Fi                               Fi

v. (same distribution of types) Marg     µiN  = Marg      µi .          i                     i

Definition 5.2: g  G is an equivalent type-reformulation of gN  G if there exists a ^g  G such that either

(i) ^g is an equivalent type-refinement of both g and gN or (ii) ^g is an equivalent type-coarsening of both

g and gN.  We then say that g and gN are equivalent, and we write g - gN.  

The equivalences in (iii) and (iv) of Definition 5.1 are in the sense of "Kuhn equivalences"

defined in Section 4.  If gN ë g , a type i in g is sub-divided into other types, with generic member (i, i).

Parts (ii) and (iii) require that the new type have the same attribute vector and belief about others as the

original ones.  This implies that if each player is optimizing then conditional on i , each player-type (i, i)

is indifferent between her own play and the play of player-type (i, iN).  Part (iv) requires that after

"integrating out" the i's we obtain the same original play.  This shows that the role of the type-refinement

is to encode in the new type some information that may be used to pick a realization from what was

originally a randomization over actions.  In summary,  if g and gN are two equivalent games, player-types

( i, i) and i will have the same payoffs and same beliefs and the games g and gN only differ in the fact that

the i's are used in encoding the outcomes of realizations of randomizations.   I therefore interpret the

games g and gN as "decision-theoretically" equivalent.

The notion of equivalent type-refinements results in the partial ordering, ë , on G.  A minimal

"refinement", defined as "sparse" below, is one where a type is the same as an attribute vector, so that the

type has absolutely no realizations of randomizations encoded in it.  A "maximal" refinement on the other

hand, defined as "comprehensive" below, would require each player to do all the randomizations at date

0 and encode them entirely in his/her type.  In Example 2.1, formulation F1 is a sparse formulation, while
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F2 is a comprehensive formulation. 

Definition 5.3: A g= < ,{µ i} i I,µ
*> in G is a sparse formulation if i = i éi I,   and is a comprehensive

formulation if each (or µ*-almost every) player-type in g is choosing a pure strategy.

One can think of  integrating out the realizations of any randomizations which are encoded in a

type.  For example, suppose that there are two possible types of Player A, (A, N) and  ( A, O),each with

the same attribute vector A and each  occurring with probability 1/2.  This can be collapsed into one type

by integrating out the 's in the following manner:  Consider there being only one type, called A , and

suppose that this player-type chooses the (KSR of the) mixed strategy  which assigns probability 1/2 to

the behavior strategy chosen by player-type (A, N) and probability 1/2 to that chosen by player-type   (A,

N) .  This operation shows how to construct a sparse formulation for any given game.  Next, one can

think of an operation going the other way where one encodes in a type the realizations  of all

randomizations.  This will produce from any game g an equivalent game which is comprehensive.  We

therefore obtain the following:

Proposition 5.1:  Fix any game g in G.  þ g G and  ḡ  G such that g ~ g ~ ḡ, g is sparse and ¯g is

comprehensive.

Proof: The proof of this and all other main results appear in Appendix B.�

We now state our axiom TIGER.  A property is any statement pertaining to games which, in any

given game, may be true or false.  In particular, a property is a binary relation b:G 6 {0,1}, which assigns

a value "true" or "false"  to each game.  All our numbered definitions in Section 6 below implicitly define

a property for games.  An "assumption", "conclusion" or "paradox" is a property of games, which may

or may not hold in any particular game.  The axiom TIGER below will be a requirement on properties

of games:  

Axiom of Type-Independence among Games which are Equivalently Re-formulated , TIGER:  A

property of games obeys the axiom TIGER if for each game g  G the property holds for g if and only if

it also holds for all other games gN  G which are equivalent to g.  



5Formally, define ^T = Tx  with  a trivial singleton set and construct ^g in G from g by
extending g onto ^T  in the obvious manner.  It is then immediate that ^g  ëg and ^g  ëgN, so g - gN.  
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The axiom TIGER is a requirement not only among games which are ordered by  ë, but rather

among all games which are equivalent.  The following, however, is immediate: 

Proposition 5.2: Let b be a property of games and suppose that b is true in game g  G if and only if it

is true for all other games gN  G for which either g  ë gN  or gN  ë g.  Then b satisfies TIGER.

5.2.  Beliefs over the Types of Others? We now return to an issue brought up in Section 4. One

may argue that it is not appropriate to model players as having beliefs over the types of others.  All that

should be important is a player’s beliefs about the strategies that will be used by other players.   So,

suppose that each player i is not characterized by a µi in B( ), but rather by the following three

components: (i) beliefs about the strategies of others, f-̄i
i  -(F-i), common to all types of player i;  (ii) the

behavior strategy fi( i) chosen by each player type i Ti; (iii) the ex ante distribution over the possible

own-types of player i in Ti.  The above three components do not specify player i's beliefs about the types

of other players -i in T-i: there are many joint distributions over T-ixF-i for which the KSR of the marginal

on F-i is f̄-i
i.  Given two games g= <,{µ i} i I,µ

*>and gN=< ,{µ Ni} i I,µ
*N>  in G on the same type space , let

us say that g and gN are strategically equivalent and write g -S  gN  if they share the same components (i)-

(iii) above - that is, if for all i in I,  (i) Marg     µi  =Marg      µiN; (ii) Marg     µi(.* i) = Marg     µiN(.* i)                                              F-i                 F-i                        Fi                          Fi
for all i (µi-a.e);  and (iii) Marg    µi = Marg     µiN. Both g and gN are in some sense valid representations

 Ti                 Ti
of the interaction between the players.  After all, why should it be important for player i to be correct in

specifying player j's type?  After we have specified i's beliefs about j's behavior strategy, knowledge by

i of j's type should be "decision-theoretically" irrelevant in some sense.  This sense is captured by the

equivalences of Definition 5.1 above.  In particular, since Definition 5.1 does not make reference to i's

beliefs about j's type space for jûi, it is easy to see that whenever g -S  gN  then g - gN in the sense of

Definition 5.15.  (The converse of course is immediate.) This therefore provides further justification for

the use of the axiom TIGER:  two games which are strategically equivalent should be considered

"equivalent" so TIGER must be imposed on any property we will use for such games!  
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6.  Rational Learning in Games
In most of the rational learning literature, there are three basic parts: the first assumes that players are

optimizing; the second part imposes an absolute continuity assumption over beliefs; the third part then

shows that these assumptions  imply convergence to some sort of equilibrium.  We now consider the three

parts formally.  The message of this section will be the following: (i) for the conclusions of the rational

learning literature to satisfy TIGER, we will have to insist on statements pertaining to equilibrium in

beliefs as opposed to equilibrium in strategies; and (ii) for many of the assumptions and conclusions

which violate TIGER, they hold if the type space is sufficiently coarse and are violated whenever the type

space is sufficient refined (or vice versa). 

6.1.  Optimization

Definition 6.1:  (optimization)  The game g=< ,{µ i} i I, µ
* >  G satisfies optimization if µi(M icM i

0)=1

éi I, where 

M i/{( ,f,z) : i( i( i))>0 and fi maximizes  I     Vi( i( i), f-iN ,  @)dµi(.
 i)} and
                                                                                       F-i

M i
0/{( ,f,z) : i( i( i))=0 and én, zi,n+1 maximizes  I     ui( i( i), z-i,n+1 ,  @)dµi(.
z(n), i)}.                                                                                                              A-i

where the integration in the definition of Mi is over f-iN  F-i. 

Definition 6.1 requires each player i to be maximizing her subjective expected discounted sum

of utilities with µi probability one.  Whenever the discount factor is equal to zero (i.e., on the set Mi
0

above) player i will be required to maximize her expected utility at each date. Under equivalent type-

reformulations, players' beliefs and payoff functions do not change, so the following should be immediate:

Proposition 6.1:  Definition 6.1, optimization, obeys TIGER. 

6.2. The Absolute Continuity Assumptions.  Given any two probability measures µN and µO

on some measure space X, µN is absolutely continuous with respect to µO if for all measurable subsets Df

X, µN(D)>0 implies that µO(D)>0.  We then write µN«µO.  µN and µO are mutually absolutely continuous

if µN«µO and µO«µN.  Fix a game g=<, {µ i} i I, µ
* >  G, and consider the following definitions:



6 Elsewhere  (Nyarko (1997a)) I have defined Condition (GH) "for generalized Harsanyi
common prior assumption" to be where µi and µj are mutually absolutely continuous with respect to
each other.  (GGH) above generalizes this latter condition (hence the name "GGH") by first requiring
merely absolute  (and not mutual absolute) continuity, and this with respect to marginals. 

17

Definition 6.2  (CPA) :  g obeys  the Common Prior Assumption (CPA)   if and only if µi  = µ*  éi I.

Definition 6.2*  (CPA*) :  g obeys  the Common Prior Assumption  (CPA*)   if and only if éi I, 

Marg      µ*      =     Marg      µi , éi I.
          F                            F

Definition 6.3 (GGH):  g obeys the generalized Harsanyi consistency condition  (GGH), (or ex ante

absolute continuity) if and only if  Marg          µ*      «     Marg          µi , éi I.
                                                                 ix Z                           ixZ

Definition 6.4 (KL-T):  g obeys (KL-T) (or ex post absolute continuity) if and only if µ*( KL-T)=1 where

KL-T / 1 i I{ =( i, -i) *Marg Z µ
*(.* ) « Marg Z µi(.* i)}.

The learning results of Jordan (1991,95)  use the common prior assumption, (CPA).  Condition

(GGH)6 is used in the learning results of Nyarko (1994 and 1997b).  Assumption (KL-T) is the natural

extension of the KL93 assumption to the model with many types, and delivers the KL93 conclusions for

µ*-almost every .  It is easy to see that the common prior assumption implies but is not implied by

condition (GGH).  Indeed, (CPA) is strictly stronger than (GGH).  Further, condition (KL-T) implies but

is not implied by condition (GGH) (for a proof that (KL-T) implies (GGH)  see Nyarko (1997b)).

Example 2.1 (formulation F2) shows that (GGH) can be true while (KL-T) fails, so  (KL-T) is strictly

stronger than (GGH).

The common prior assumption (CPA) (as opposed to (CPA*)) violates TIGER.  The problem is

that (CPA) requires each player to get correct the mapping from each other player's type to that player's

behavior strategy.  For example fix a game g with two types of each player and suppose that g obeys

(CPA).  Define another game exactly the same as the first except that in the new game Player A mis-

labels the types of B .  In particular, if ¯B and ^B  are the two types of player B and f(¯B)  and f(^B) are the

behavior strategies they use, then in game gN Player A incorrectly believes player-type ¯B is using f(^B)

and player-type ^
B is using f(̄ B).  It should be clear that the re-labeling is "harmless" and that g and gN

are equivalent games.  (Indeed, this was precisely the discussion at the end of Section 5.)  The game g,
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however,  obeys (CPA) while gN violates it.  Hence (CPA) violates TIGER.  For this reason (CPA)  is

really not a good assumption to place on a game.   Assumption (CPA*) gets around this problem: (CPA*)

obeys TIGER and implies the Jordan convergence results which were originally proved with CPA (see

Propositions 6.2 and 6.5 below) . 

  If one distribution is absolutely continuous with respect to another distribution over a product

space, then the same will be true of their marginal distributions.  Coarsening a type-space is similar to

the operation of going from a joint to a marginal distribution.  It is therefore not surprising that if

condition  (GGH) (resp.  (KL-T)) holds in a game and we coarsen the type-formulation, condition (GGH)

(resp.  (KL-T)) will continue to hold.  The difficulty lies in going from one type-formulation to a finer one.

Indeed, Example 2.1 shows that (KL-T) may hold in one game (as in F1) but may be violated when the

type-formulation is refined  (as in F2)- so (KL-T) violates TIGER.  This does not happen with (GGH),

however, and in particular (GGH) obeys TIGER.  This is because player i’s beliefs about others are

independent of i’s type, and i’s type is the only type used in the statement of (GGH) - in particular, under

(GGH) player-type i only has to be "correct" (in terms of absolute continuity) about the average play of

others;  and beliefs about average play do not change with i’s type or with the type formulation.  Similar

reasoning shows why assumption (CPA*) obeys TIGER. Condition (KL-T) on the other hand conditions

on the true vector of types, which will change as the types, and hence type-formulations, change.  In

particular, under (KL-T) player-type i has to be "correct" (in terms of absolute continuity) about the true

play of others, and this true play will change with the type formulation.   The ambiguity of the notion of

what is a true type leads to the failure of (KL-T) to satisfy TIGER.  Formally we have the following two

results: 

Proposition 6.2: (a)  (CPA*) obeys TIGER; (b)  condition (GGH) obeys TIGER; (c) condition (KL-T)

violates TIGER; and (d) (CPA) violates TIGER.

Proposition 6.3 (Monotonicity in (KL-T)):  Fix any g in G and suppose that g obeys (KL-T).  Then all

equivalent type-coarsenings of g also obey (KL-T).

Proposition 6.3 implies that given any chain of equivalent games linearly ordered by ë  from



7By "linearly ordered by ...."  we mean that we can index the games by k in [0,1] such that
k$kN implies gk  $ gkN (or vice versa).   

8A very nice example to this effect was independently provided to me by R. Smorodinsky
(1995) while this paper was undergoing revision.  

9Suppose that there are two players each with a type in [0,1], but that the set of possible
vectors of types is the diagonal on the unit square. Suppose each player-type chooses a different pure
strategy, and beliefs are such that conditional on a player observing her own type, she knows
perfectly the type of her opponent (which is equal in value to her’s).  Then KL-T holds with an
uncountable set of types, a violation of Proposition 6.4.  
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coarsest to most refined7, there will exist a critical game such that all coarser ones obey (KL-T)  and all

finer ones violate it (or else either all obey or all violate (KL-T)).  Examples 8.1 and 8.2  in Appendix A

compute such critical games in two different chains of games.  Example 8.1  provides a chain of games

g1, g2, ...., g4 where gk for k<4 has a countable type-space and g4 an uncountable type-space.  The game

gk will satisfy (KL-T) for k<4 and will violate it for k=4.  This suggests a connection between condition

(KL-T) and the countability of the type-space.  Indeed, we have the following: 

Proposition 6.4 ((KL-T) and the Countability of the Type-space):  Fix any game g= <,{µ i} i I,µ
*> in G

with at least two players.  Suppose g obeys (KL-T)  and is comprehensive.  Then the set of plays is

countable: i.e., there exists a countable subset  of Z such that the event {=( ,f,z) in * z  }  has µ*

and µi probability one éi in I.  If, in addition, each vector of types results in a different play path, then the

type-space must be countable.  

In F2 of Ex. 2.1 each player-type chooses a pure strategy at each date.  Proposition 6.4 therefore

implies that (KL-T) cannot hold for that example. When the type-formulation is not comprehensive, so

each type does not choose a pure strategy at each date, it is possible to have a model with uncountably

many types which satisfy the Kalai and Lehrer assumption8.  Proposition 5.1, however, then shows that

the “game” can always be equivalently reformulated so that in the new game each player-type chooses

a pure strategy.  In that case, as Example 2.1 indicates, the notion of exactly what a type is becomes

ambiguous, as is whether or not assumption (KL-T) holds. We note that this result relies critically on the

independence assumptions used.9
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6.3.  The Convergence Results of Jordan, KL93 and Nyarko.  The norm 2.2 denotes the

total variation norm on -(Z); i.e., given p, q -(Z), 2p-q2 / SupE
p(E)-q(E)
, where the supremum is over

Borel measurable subsets E of Z.  Fix any attribute vector  /{ i} i I .  Define  éi I, 

Ni( i) / {f=J j I fj F: fi  argmax  Vi( i,f-i, @ )}        and     N( ) / 1 i I Ni( i) ; (7)

ND( )  / { N -(Z):  þ f N( ) with N = (f)}. (8)

SE ( ) / {f =J j I fj F: éi I, þ(fj
i)1#j#n  F   with fi

i = fi such that 

(i) fi  argmax  Vi( i,f
i
-i , @ )  and (ii)   2 (f) - (fi) 2 #  } and SE( ) / SE0( ). (9)

N( ) is the set of Nash equilibrium behavior strategy profiles for the complete information game

with attribute vector .  ND( ) is the set of all distributions of play that can be generated by some Nash

equilibrium behavior strategy profile. SE ( ) (resp. SE( )) is the set of subjective -equilibria (resp.

subjective equilibria).  One can show that ND( ) is equal to the set of all distributions induced by some

f  SE( ).  (The definitions on subjective equilibria are taken from Kalai-Lehrer (1993b). See also

Battigali et. al. (1988)  and (1992).)

 Given any history h  , and any behavior strategy fi   Fi  for i I, define the continuation strategy

fi,h  as follows:  éhN   , fi,h(hN) = fi(hhN)  where hhN is the concatenation of h and hN.  Analogously, given

f={fi}i I   F and h  , define fh  F by fh(hN) = f(hhN) éhN  .  Given a sequence  {xn}
4

n=1 in some metric

space X and a set   f X, write xn6
c  if every cluster point of {xn}

4

n=1 lies in the set .  

Fix a game g in G and let fi,  f( )={fi( i)}i I  and f* be as in eq.’s (3) - (5).  When the common prior

assumption holds, either (CPA) or (CPA*) , fi = fj = f*  éi and j.  Define

Jordan  / { =( ,f,z) : fi = fj = f* éi,j  and  f*
z(n)  6

c N( )}.  (10)

The set  Jordan  is the set where the limit points of KSR’s of beliefs of the future given the past (and not

conditioning on types) lie in the set of Nash equilibrium strategies of the underlying complete information

game of the realized attribute vector .  

Next define 

Nyarko  / W1CD1 C , (11)

where W   /  {( ,f,z) : lim N642 (fi
z(N)) -  (f*

z(N))2=0 éi I}; (12)



10 Note that C û 1 i I{( ,f,z) : fi
z(N) 6

c N( )}.  Instead, the former set contains the latter,
usually strictly.  In particular C is not the set where continuation of KSR of beliefs are Nash
equilibria.  The difference is the same as the difference between Nash and subjective Nash equilibria,
and is due to the fact that on the set C players are allowed to have different (limit) beliefs about play
off the equilibrium path.  
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CD  / 1 i I CDi    with    CDi / {( ,f,z) : (fi
z(N)) 6

c ND( )}   éi I;    and (13)

       C   /  1 i I Ci      with  Ci  / {( ,f,z) : fi
z(N) 6

c Ni( i)}    éi I . (14)

The set W is the event where each player i's' beliefs, µi,  about the future, {zN+1,zN+2,...}, given the past,

z(N), (and not conditioning on own-types) "merge" with those of µ* (and hence with each other) as the

date N tends to infinity.  The set CD is the set where limit points of each player's beliefs about the future

play conditional on the past (again, not conditioning on own-types) is the same as the play of some Nash

equilibrium.  The set C   is the set where for each i  I, cluster points of the continuation strategies of

player i's KSR of beliefs not conditioning on own-types, fi, lie in the set Ni( i).  In particular10, if  f4 = 

(fi
4 ,f-i

4) F  is such a cluster point then fi
4 is a best-response to f-i

4 for the player with attribute vector i.

 Finally, define 

KL   /  { =( ,f,z) : é >0, þN=N( , ) such that én$N, fz(n)( ) lies in SE( )}. (15)

The set  KL  is the set of sample paths where é >0 (the continuation of) the strategies of  players

eventually lie in the set of subjective -equilibria of the game with the realized attribute vector,  .  

The results in Proposition 6.5 below are the main results of Jordan (1995), Kalai and Lehrer

(1993a), and Nyarko (1997b). The result we state for Jordan is a slight generalization of Jordan (1995),

relaxing the assumption (CPA) he used to the weaker assumption (CPA*) - the proof appears in the

Appendix B.  Immediately following this, we record in Proposition 6.6 the fact that the Jordan and

Nyarko results satisfy TIGER, while the Kalai and Lehrer result violates it (as is easily seen from

formulations F1 versus F2 of Example 2.1).

Proposition  6.5:  Fix any game g=<T, {µi} i I, µ
*> in G.  

(a) (Jordan):   Suppose g satisfies optimization (6.1) and (CPA*) .  Then 

µ*( Jordan) = 1. (16)



11The Jackson et. al. paper was set in the context of a single agent inference problem.  The
connection with this paper however is immediate. The set  of their paper corresponds to the type
space T here.  What they refer to as a representation is very similar to what we call here an
equivalent reformulation of a game.  They introduce a concept of learnability, which, modulo
technicalities, is Eq. (18).  Proposition 6.7 then shows, loosely speaking, that if  a game g in G is
learnable (or specifically µ*) then so too is any equivalent coarsening of g. 
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(b) (Nyarko):   Suppose g satisfies optimization (6.1) and (GGH).  Then

 µ*( Nyarko) = 1. (17)

(c) (Kalai and Lehrer):  Suppose g satisfies optimization (6.1) and (KL-T).  Then 

µ*( KL)=1. (18)

Proposition 6.6: (a)  Eq. (16) obeys TIGER. (b)  Eq. (17) obeys TIGER. (c)  Eq. (18) violates TIGER.

The lemma below indicates an entire class of properties of games which will obey TIGER.  The

lemma is used in the proof of parts (a) and (b) of Proposition 6.6.  

Lemma  6.1:  Fix any sets Di f i x Z and D* f  x Z and any numbers ki and k* for i in I.  Define the

property bi  for i in I and the property b* as follows:  g= <, {µ i} i I, µ
* > in G satisfies bi  if and only if

µi(Di)=ki ; and g satisfies b*  if and only if µ*(D*)=k*.  Then b*  and each bi satisfy TIGER.

In the monotonicity result below we use the definition of SE( )  of (9) where we insist that the

fj
i's of that definition are equal to the beliefs of player i about j.  This monotonicity result is  related to the

work of Jackson11, Kalai and Smorodinsky (1997).  

Proposition 6.7 (Monotonicity):   Fix any g in G and suppose that g obeys  the KL93 conclusion in eq.

(18).  Then the conclusion also holds for all equivalent type-coarsenings of  g.  

6.4.  On Nachbar (1997).  The conclusion of Nachbar (1997)  is that there is an inherent conflict

between prediction and optimization when the strategy space is sufficiently rich.  The definition of

optimization is as in (6.1).  We now define prediction.  Given any history h of length R<4 say, the cylinder

set C(h) is the subset of all play paths z in Z whose first R elements equal h.  The definition below is an
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absolute continuity condition over cylinder sets. 

Definition 6.5: The game g in G obeys Ex Post  Local Absolute Continuity (EPLAC)  if and only  if for

every h in H, and µ* -a.e.  ={ i} i I,  (f( ))(C(h))>0 implies (fi( i ))(C(h)) > 0. 

Given any >0 and any integer R, and any f and fN in F, f is said to ( ,R)-play like fN  if for all

histories h of length R or less, * (f)(C(h)) - (fN)(C(h)) * # .  Define

P  / { =( ,f,z) : é >0, éi I, é integers R, þN=N( ,R, ) s.t. én$N, fz(n)( )   ( ,R)-plays like  fiz(n)( i)}.

(19)

 Definition 6.6:  (Nachbar Prediction):  The game g in G obeys Nachbar prediction if and only if 

(i) g satisfies EPLAC;  and  (ii) 

  µ*( P) = 1 . (20)

Definition 6.7:  (The Nachbar Paradox).  The game g  G satisfies the Nachbar Paradox if it is not the

case that g obeys both optimization (6.1) and Nachbar Prediction.  

Nachbar (1997) argued that in games where the strategy sets are sufficiently rich there is an

inherent conflict between optimization and prediction in the sense of the definition above.  As illustrated

in Example 2.1, a sufficiently rich strategy set requires a sufficiently refined type-space.  In particular,

in that example under formulation F1 prediction and optimization hold, while under formulation F2,

optimization holds but prediction fails.  In particular F2, the more refined space, obeys the Nachbar

paradox while F1 violates it.  Among other things this implies the following: 

Proposition 6.8:   The Nachbar paradox violates TIGER.  

We also have the following monotonicity result: 

Proposition 6.9 (Monotonicity):  Fix g and gN in G with gN ë g.  (a)  If the Nachbar paradox holds for



12Although (EPLAC), ex post local absolute continuity of µ*  with respect to µi, obeys
TIGER, it is easy to see that ex post local mutual absolute continuity - µi with respect to µj for all i
and j - does not obey TIGER.  Indeed consider Example 2.1. Under F1 all players' beliefs are
mutually absolutely continuous with respect to each other (indeed the common prior assumption
holds in that case).  Consider now, however,  F2 and fix a vector of types =( A , B).  Player A of
type A assigns probability one to one particular date 1 action that she, Player A, will choose while
player B assigns equal probability to both the actions of Player A.  The players' beliefs, conditional
on their types, are not locally mutually absolutely continuous in F2.  Hence ex post local mutual
absolute continuity does not satisfy TIGER. 
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g then it also holds for gN; and (b) if gN violates the Nachbar paradox (i.e. if gN satisfies optimization and

prediction) then so too does g.  

Proposition 6.9 above is proved with the aid of the following two lemmas which may be of

interest in their own right.  The first, Lemma 6.2 below, shows that EPLAC obeys TIGER, which is

interesting when compared to the failure of (KL-T) to satisfy TIGER12: 

Lemma 6.2:   (EPLAC) satisfies TIGER.

Lemma 6.3:  Fix g and gN in G with gN ë g.  Then if the property in (20) holds in gN, it also holds in g.

The Nachbar paper asks whether true play can be predicted.  We have argued that there

may be problems with the notion of the "truth" here, and in particular that the Nachbar paradox violates

TIGER.  Instead of asking whether there is prediction of the truth, we could ask whether there is

prediction of beliefs.   Define the set PB as follows:

PB /{ =( ,f,z) : é >0,é integers R, þN=N( ,R, ) s.t. én$N, f*
z(n)  ( ,R)-plays like fiz(n) , éi I}.(21)

Observe that this is the same as the set where Nachbar's concept of prediction occurs (see P in

(19)) except that we use beliefs f*
z(n) and fiz(n) in place of  true strategies and beliefs conditional on own-

types,  fz(n)( ) and fiz(n)( i), respectively.  Here it may be useful to stress again that fi
z(n)( i) and fiz(n)

represent the same beliefs over F-i, the strategies of others;  the only difference is as regards beliefs about

own strategies - the latter conditions on own-types i while the other does not.  It is easy to see that on the



13An alternate definition of prediction of beliefs would replace condition (ii) of Definition 6.8
with µ*(W)=1  where W is as in (12).  Since W f PB this results in a stronger notion of prediction of
beliefs.  This stronger definition also obeys TIGER, and also follows from condition (GGH).  
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set  PB,  for large enough n,  fi
z(n)  ( ,R)-plays like fjz(n) , éi,j I    Hence ignoring beliefs about own play,

over time players make approximately the same predictions about the future play.  For example at any

period n sufficiently large, players i and j will have approximately the same beliefs about the which action

a third player k will choose in the next period.  This is not exactly prediction of beliefs - indeed we have

not modeled what i thinks about what j believes.  It is however prediction beliefs in the sense that i and

j will have the same beliefs about any third player k.  Analogously to Definition 6.6 we therefore have:

Definition 6.8:  (Prediction of beliefs):  The game g in G obeys prediction of beliefs if and only if (i) g

satisfies EPLAC;  and  (ii) 

  µ*( PB) = 1 . (22)

From Lemmas 6.1 and 6.2 the following is immediate: 

Proposition 6.10:   Prediction of beliefs obeys TIGER.

To give an indication of how prediction of beliefs can be obtained, we note that condition (GGH)

implies prediction of beliefs13.  (To see this apply Proposition 6.5b and observe that W f PB).   In

particular, both formulations F1 and F2 of example 2.1 obey Prediction of Beliefs.   When we move from

strategies to beliefs, the Nachbar "paradox" disappears, and instead, under (GGH), we very easily obtain

both prediction and optimization!

7.  Conclusion
  Jordan (1996) states that a notable shortcoming of Bayesian learning models is that "convergence

occurs at the level of expectations and not necessarily at the level of actual strategies."  This paper shows

that this should not be considered a shortcoming.  Instead, if we want our results to be consistent in the

sense of obeying TIGER, we can make statements only at the level of expectations or beliefs.

Ambiguities in what constitutes the "truth" force us away from statements on true strategies and toward



14To see this, define the game ḡk to be the game gk re-defined on the type space Ti= {HEADS,
TAILS} 4 in the obvious manner:  given any type i in Ti in game ḡk, ignore the coordinates k+1,
k+2,.... and proceed just as in game gk .  Next for each T and k#4, define k to be equal to (f( )), 
the play induced by the vector of types  in game gk.  Then it is easy to see that for each , k( )
converges to 4( ) in the weak topology.  
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statements on expectations. 

What is the correct type-formulation?  There is no "correct" type-formulation.  We advocate

neither the sparse nor the comprehensive formulation.  If you believe that people really do not mix, then

you are advocating the comprehensive formulation.  But then the Nachbar paradox holds (see formulation

F2 of Example 2.1).  On the other hand if you adopt the sparse formulation, you must deal with the

arguments of those who insist that people do not mix.  In Section 6 we showed that there is usually a

critical type-formulation such that the KL93 assumptions and conclusions hold for all coarser

formulations and fail to hold for all finer formulations.  In that case you may define what is the correct

formulation in terms of whether you want the KL93 conclusions to hold.  In summary, if one is not

willing to move to concepts like equilibrium in beliefs which satisfy TIGER, there is no obvious "correct"

type-formulation. The best type-formulation, as with beauty, may lie in the eye of the beholder.  

8.  Appendix A:  Examples

Example 8.1: (A critical g for (KL-T)):  Let I, A and  be as in the matching pennies game of Example

2.1.  We now define for each k = 0,1,2,3,... ,4, a game gk    G.   Define g0 and  g4  be formulations  F1

and F2, respectively, of Example 2.1. For 1#k<4, define Ti
k / {HEADS,TAILS} k, and suppose that the

types in Ti
k are generated via k independent tosses of a fair coin.  The behavior strategy of player-type

i={ i,1, i,2 ,..., i,k}  Ti
k  in game gk is as follows:  At date n # k, choose the first action (TOP for i=A and

LEFT for i=B) if i,n=HEADS, and the second action otherwise;  and at date n > k, randomize over both

actions with equal probability. This defines the game gk.  It is easy to check that the collection of games

{gk} 4

k=1  are all equivalent with g4 ë  gk+1  ë  gk   ë  g0   for all k.  There is also obviously a weak-topology

sense14 in which the gk's converge to g4.  One can also check that the game gk satisfies (KL-T) ék < 4, and

violates (KL-T) for k=4.  g4 in this case is a "critical" g, as mentioned in Section 6, for the given chain

of games.  �
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Example  8.2: (A critical g for (KL-T)):  Let I, A and  be as in the matching pennies game of Example

2.1.  We now define for each k in [0,4] a game gk    G.  Each of these games will be equivalent and will

have exactly the same type-space.  Further, there will exist a critical k (actually k=1) such that (KL-T) will

hold for each k > 1 but will fail for each k # 1.  The example will also be such that if k and kN are close,

then the games gk and gkN will also be close in the weak-topology sense mentioned in Example 8.1. 

Define for each k and each i in I, Ti
k

  / [0,1]4.  The types in Ti 
k  are generated via the distribution

over [0,1]4  equal to the countably infinite product of uniform distributions over [0,1].  Define é n=1,2,....

and k in  [0,4],

n,k   =  (1/2)(1/(n+1)k/2)  . (23)

The behavior strategy of  player i of type i
k = { k

i,1, 
k

i,2 , 
k

i,3 , ...}   Ti
k   is defined as follows:  the

probability that she assigns to her first action (TOP for i=A and LEFT for i=B) at date n is  

                                                           1/2   +  n,k      if   i
n    [0,1/2)  

fi,n ( i )   =   {    (24)
                                                           1/2   -  n,k      if   i

n    [1/2, 1]  .

The probability assigned to her second action at date n is therefore 1-fi,n( i).  We suppose that each player

knows that this is how the types and behavior strategies are generated.  Each player observes her own type

but not the types of others.  The probability that player i assigns to the event that player jûi chooses her

first action is  (1/2)[1/2 + n,k] + (1/2)[1/2 - n,k] = 1/2.  Each player is therefore indifferent between each

of her two actions, so the behavior strategies just defined are best-responses to each other.

When k=4, n,k=0 so each player-type is randomizing with probabilities 1/2 and 1/2 at each date.

When k=0, n,k=1/2 so each player is choosing a pure strategy, which depends on her type.  Hence, the

cases  k=4   and k=0 correspond to formulations F1 and F2 respectively of Example 2.1.  For each kû0,

each player-type’s behavior strategy randomizes over her actions at each date with probabilities which

converge, as the date n6 4, to the vector (1/2,1/2).  The speed with which the probabilities converge to

(1/2,1/2) is increasing in k.  For (KL-T) to hold, this convergence must be sufficiently fast.  It turns out

that in the above example, the critical k for which this is true is k=1.  In particular, when k # 1, the rate

of convergence is so slow that (KL-T) fails to hold.  To see this, define i,n  to be the ratio of the true

probability of player i choosing a given action at date n to the probability assigned by the beliefs of  jûi

 to that action (which, of course, is 1/2): 
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                   fi,n ( i )/(1/2)    if the first action occurs at date n 
i,n      =     {  (25)

                   [1-fi,n ( i )]/(1/2)    if the second action occurs at date n 

Then  34

n=1 (1- i,n)
2    =    34

n=1 (1- 2fi,n ( i ))
2    = 4 34

n=1 
2

 n,k  =  34

n=1 1/(n+1) k.  This sum is finite for k>1

and is infinite for k #1.  Applying (Shiryayev, Cor. 4 of p. 499), then shows that condition (KL-T) holds

for k >1 and fails for k #1.  �

9.  Appendix B: Proofs
Proof of Proposition 5.1:  Fix any g= < ,{µ i} i I,µ

*> in G.  To obtain a g in G which is sparse and

equivalent to g, define =  and define the behavior strategy of player-type i = i to be KSR of the

marginal on Fi of µi(.* i).  In particular, the sparse formulation, g, is obtained by integrating out any

randomization that was in the original types in g.  

To obtain a gN in G  which is comprehensive and equivalent to g, one needs to perform at date -1

(i.e., before the game begins), all the possible future randomizations, and encode them in the type.  The

details of this are as follows:  Define i/[0,1]4  , TiN/Tix i   and TN=JiTiN.  Let Unif[0,1] be the uniform

distribution over [0,1] and define i / q4

k=1Unif[0,1].  We will later construct the behavior 

strategy, fi( iN), of each player-type iN in game gN.  Define 1          (resp.  1            ) to be the probability
                                                          f(N)               fi( iN) 

measure on F (resp. on Fi)  that assigns probability one to f(N) (resp. fi( iN)).  A unique µ*N  B(TNxFxZ)

may be constructed with the following three components:  (a)  MargTNµ
*N  = (MargT µ

*) q Ji I i ;  

(b)  Marg F µ
*N(.* N) = 1        ;  and (c)  Marg Z µ

*N(.* N,f) = (f).  Similarly, a unique µiN  B(TNxFxZ) 
                                     f(N)
may be constructed using the components (a) and (c) above, replacing µ* with µi and µ*N with µiN, and

replacing (b) with the requirement that MargF µiN(.* N=( , ))  = (Marg      µi(.* ))  q 1          .                 
                                                                                                                 F-i                   fi( iN) 
   We now construct the {fi( iN)} i I  used above.  Fix any i in I and i Ti.  Since  is countable we

can write /{h1,h2,h3,....}.  Then for any integer m, fi( i)(h
m) is a probability measure over Ai showing

how player-type i in game g chooses actions at history hm .  Since Ai is finite we may consider it an

ordered set, Ai={ai,R}                , with #Ai the cardinality of Ai.  Fix an m and let Supp fi( i)(h
m) be the                                         R=1,2,...,#Ai

support of fi( i)(h
m), similarly ordered.  For each hm H, partition the unit interval [0,1] into distinct

exhaustive sub-intervals with the R-th sub-interval having lebesgue measure equal to the probability

assigned by fi( i)(h
m) to the R-th action in Supp fi( i)(h

m).  Let -i( i,h
m) denote this ordered set of sub-
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intervals.  Each member of -i( i,h
m) is associated with a unique action in Ai.  For any iN= ( i, i,1, i,2, i,3,...)

TiN define fi( iN) by requiring it to choose at history hm the action associated with the R-th member of

-i( i,h
m), where R is the unique integer such that i,m lies in the R-th member of -i( i,h

m). 

We have completed the construction of gN=<TN,{µ Ni} i I,µ
*N> .  It should be obvious that it satisfies

the conclusions of this proposition with gN= ḡ .  �

Proof of Proposition 6.1:  Fix any two games g and gN in G and suppose that gNëg.  Let i , i and iN =

( i, i)  for i  i be as in Definition 5.1.  In particular, i and iN are two generic types in g and gN

respectively, which share the same attribute vector.  From the independence assumption 4.1 these two

player-types will also share the same beliefs about others.  From condition 5.1(iv) the behavior strategy

of player type i in game g is equal to the KSR of the mixed strategy obtained by some randomization

over the behavior strategies over player-types (i, i) for i i.  Standard arguments show that player-type

i 's behavior strategy is a best-response for her if and only if this is the case for all those of player-types

( i, i) for i   i (except possibly a set with zero probability).  Hence optimization occurs in g if and only

if it occurs in gN.  An application of Proposition 5.2 therefore this proves the proposition. �

Proof of Proposition 6.2:  (a) This follows immediately from the fact that if g -gN then the ex ante

beliefs over F will be the same in both games g and gN.  

(b) Fix any g =< ,{µ i} i I,µ
*> and gN =< N,{µ iN} i I,µ

*N> in G and suppose that gNëg.  Suppose gN obeys

(GGH).  By definition TN=Tx  for some .  It is easy to verify that if one probability measure is

absolutely continuous with respect to another on the cartesian product of two spaces then the same is

true of their marginals.  Hence if gN obeys (GGH), Marg           µ* « Marg          µi éi I, so g obeys (GGH).
                                                                                         Tix Z                 TixZ  

Next, suppose g obeys (GGH).  Fix any i in I. Then, MargZµ
* « MargZµi .  Since µi and µiN and also

µ* and µ*N share the same marginal on Z, this implies that

MargZµ
*N   « MargZµiN . (26)

Following each history each player chooses an action independently of the others.  So, recalling the

notation of eqn's (4) and (5), for each date N history hN = (a1,...,aN),  

µ*N({hN} * iN) = JN
n

-
=

1
0 [f i( iN)(hn)(ai,n+1)][f -i

*(hn)(a-i,n+1)] , (27)
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µiN({hN} * iN) = JN
n

-
=

1
0 [f i( iN)(hn)(ai,n+1)][f -i

i(hn)(a-i,n+1)] , (28)

µ*N({hN}) = JN
n

-
=

1
0 [f i

i(hn)(ai,n+1)][f -i
*(hn)(a-i,n+1)] ,  and (29)

µiN({hN}) = JN
n

-
=

1
0 [f i

i(hn)(ai,n+1)][f -i
i(hn)(a-i,n+1)] . (30)

Define 

                                        µ*N({hN} * iN)                                               µ
*N({hN})

           rN( iN) /                           ,   é iN TiN     and     rN  /                       , (31)
               µiN({hN} * iN)                                               µiN({hN})

whenever the denominators of these expressions are positive, and define them to be equal to zero

otherwise.  Eq.'s (27) - (30) imply that éN, hN  HN, and iN TiN such that µiN({hN})û0 and  µiN({hN} * iN)û0,

rN = rN( iN). (32)

It is easy to see that rN is the Radon-Nikodym derivative of MargZ µ
*N with respect to MargZ µiN when the

two measures are restricted to HN.  Hence, using Shiryayev ((1984), Theorem 2, p.495), (26) implies that

there exists an r4 such that limN64
 rN = r4  which is finite with probability one with respect to µ*N and µiN.

From (32) this in turn implies that 

limN64 rN( iN) = r4 . (33)

We will now argue that for each N and µ*N a.e. iN, 

Marg        µ*N(.* iN)     « Marg            µiN(.* iN). (34)
                                             HN                                HN

To show this assume, on the contrary, that for some hN and for a set of iN 's with µ*N positive probability,

the following is true: (i) (27) is positive and (ii) (28) is zero.  Noting that the products in (27) and (28)

share some common terms, (i) implies that (29) is positive while (ii) implies that (30) is zero.  This is a

contradiction to (26), which proves (34).  

It is also easy to see that rN( iN) is the Radon-Nikodym derivative of MargZ µ
*N(.* iN) with respect

to MargZ µiN(.* iN) when the two measures are restricted to HN.  Eq.'s (33) and (34) and the Shiryayev

result mentioned earlier then imply that MargZµ
*N(.* iN) «MargZµiN(.* iN) for µ*N a.e. iN .  Since by

definition µ*N and µiN have the same marginal on TiN, we conclude that Marg           µ*N « Marg             µiN         TiNxZ                  TiNxZ
So gN obeys (GGH).  �

Proof of Proposition 6.3:  Fix any two games g= <,{µ i} i I,µ
*>  and gN=< N,{µ Ni} i I,µ

*N> in G and
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suppose that gN ë g.  Then, following the notation of Section 5, we may write TN=Tx .  Fix any i in I and

define for each ( , )=( i , i, -i , -i), the following measures on Z:  P*(.* , )/MargZµ
*N(.* , ) and 

Pi (.* , )/  Marg Z  µiN(.* i, i ) (and note that the latter depends on (, ) only through (i , i)).  Suppose gN

obeys (KL-T).  Then   P*(.* , )  « Pi (.* , ) for µ* almost every (, ) in TN.  We may integrate out the 's

conditional on , to conclude that  

I  P*(.* , )dµ*(.* )  «  I  Pi
 (.* , )dµ*(.* )  ,   for µ* almost every   . (35)

The left hand side of (35) is equal to Marg Z µ
*N(.* ).  From the definition of µ*, the marginals of µ* and

of µi  on  Tix i  are the same, so the right hand side of (35) is equal to  Marg Z µiN(.* i ).  Hence, 

Marg Z µ
*N(.* ) « Marg Z µiN(.* i), so g obeys (GGH).�

Proof of Proposition 6.4:  We begin with the following claims:

Claim 1:  A probability measure can assign positive probability to at most countably many distinct

mutually disjoint sets.  

Proof of Claim 1:  Let P be a probability measure on a measure space (0,T).  Fix an index set Q and

let  { q} q Q  be any collection of mutually disjoint measurable subsets of  0  with P( q)>0 éq Q.   Define

for any integer k>0, Qk / {q Q*P( q)>1/k}.  Qk  cannot contain more than k distinct elements Q, for

otherwise the total probability of the union of q   over qQk  would exceed 1.  Since Q = U4

k=1Qk  this

shows that Q must be countable. //

Claim 2:  Let :T1 6 Z  and :T2   6  Z  be two Borel measurable functions.  Let  = 1 q 2  be any

product measure on T1xT2.  Then there exists a countable set  such that if J/{( 1, 2)  T1xT2 *

( 1)= ( 2)Û }, then (J)=0.

Proof of Claim 2:  Let ,  and  be as in the claim.  Define / {z in Z* 2(
-1(z))>0}.   If zûzN then 

-1(z) and  -1(zN) are disjoint.  Hence from Claim 1,  is countable.  With this , let J then be as in the

conclusion of this claim (Claim 2).  Define J(1) = { 2 in T2 * ( 1, 2)  J}.  We proceed to show that

2(J( 1)) = 0  é 1 in T1. (36)

So fix any 1 in T1.  Clearly (36) holds if J( 1) is empty.  So suppose J(1) is non-empty.  Then ( 1)Û .
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This implies first that J( 1) =  { 2* ( 1)= ( 2)} = -1( ( 1))  and also that 2(
-1( ( 1))=0.  Hence, eq. (36)

again holds.  Eq. (36) and the fact that  is a product measure in turn proves that (J)=0. //

Proof of Proposition 6.4 (Cont’d):   By assumption there are at last two players, 1 and 2 say.  Let z
µ

:

6 Z  be the random variable on  which defines the play path z in each state  in .  Fix any 1 T1 and

2 T2 and define A( 1)/{z̄  Z : µ1({ z
µ

=z̄ }* 1)>0} and C( 2)/{z̄   Z : µ2({ z
µ

=z̄ }* 2)>0}.  From Claim 1, A(1)

and C( 2) are both countable so we may write A(1)={ 1( 1),
2( 1),

3( 1),...} and  C(2)={ 1( 2),
2( 2),

3( 2),...}.   Next,  define é -1={ j} jû1 in T-1 and éintegers m, m ( -1)/  
m ( 2) and B( -1)/{ 1( -1), 

2 ( -1), 
3

 ( -1),...}.  One may check that we may order the points in the sets so that for each R and m, R

and m (and hence m) are measurable functions of their arguments.  Fix any R and m.  Note that m( -1)

depends on -1 only through 2.  Apply Claim 2 with  = (Marg       µ
*) q (Marg       µ

*), = R and = m, and
            T1                    T2

let  R , m  f Z  be the countable set obtained from that claim.  Define  = UR,m=1,2,... 
 R , m.  Then  is

countable and 

µ*({ ={ i} i I* 
R( 1) = m

 ( -1) Û  for some R and m}) = 0. (37)

By assumption the game is comprehensive.  Hence é   T there exists a unique play path z() in Z

resulting from that vector of types.  Also µ*({ z
µ

=z( )} * ) = 1.  So if ={ i} i I TKL-T, then µi({ z
µ

=z( )} * i )

>0 éi I, which in turn implies that z()= R( 1)=
m

 ( -1) for some R and m.  By assumption µ*(TKL-T)=1, so

(37) implies that µ*({ ={ i} i I* z( )Û  }) = 0, from which the proposition follows.  �

Proof of Proposition 6.5: (a) Fix any g=< ,{µ i} i I,µ
* > in G.    Suppose that g obeys (6.1) and (CPA*).

Define another game gN=< N,{µ iN} i I, µ*N> where we suppose each player's beliefs equal the "true"

distribution µ*:  in particular, set TiN=Ti , µiN = µ* éi in I, and µ*N equal to the outside observer distribution

induced by {µiN} i I .  It should be clear that µ* = µ*N  and that the game gN obeys the common prior

assumption (CPA).   Since g obeys (CPA*) and under the independence assumption 4.1 beliefs about

others are independent of own-types, the belief of each player-type i  is the same in g as it is in gN.

Hence, since g obeys optimization (6.1) so too does gN.   The game gN therefore satisfies the conditions

of the original Jordan (1995) result, so the conclusion of Proposition 6.5(a) holds for gN.  Since µ* = µ*N

and f* = f*N, that conclusion also  holds in g, which is what we seek to prove.  �
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Proof of Proposition 6.6:Any two equivalent games will have the same ex ante true play f* and ex ante

beliefs fi for i in I.  The proof of parts (a) and (b) therefore follows from Lemma 6.1.�

Proof of Lemma 6.1:  Fix any g= < ,{µ i} i I, µ
* > and gN=< N,{µ Ni} i I,µ

*N> in G and suppose that gN ë

g.  Then µi and µiN have the same marginal on i.  From the independence assumption 4.1 and 5.1(iii) and

(iv) we conclude that conditional on i, µi and µi  have the same distribution over F and therefore over Z.

Hence µi and µi  have the same marginal distribution on ixZ.  This implies µi(D)=µi(D) for any Df

i xZ, so g obeys bi if and only if gN does.  Apply Proposition 5.2 to conclude that bi satisfies TIGER.

Similar arguments imply that b* obeys TIGER.  �

Proof of Proposition 6.7:  Fix any g= < ,{µ i} i I,µ
*> and gN=< N,{µ Ni} i I,µ

*N> in G and suppose that gN ë

g.  Then, following the notation of Section 5, we may write TN=Tx .  We concentrate on game gN for now.

Fix any i in I,  > 0 and date n.  Define N(i, ,n) = {  in N* 2 (fz(n)( , ))  -  (fi
z(n)( i, i))2 # } .  The

inequality below follows from the fact that the left hand side is less than  on  N(i, ,n), and, since  is

a probability, is less than one on N(i, ,n)c:

2 (fz(n)( , ))  -  (fi
z(n)( i, i))2 #   +  1 (38)

                                                                                                 N(i, ,n)c

(where the superscript c denotes the "complement" of the set and 1X  is the indicator function on X).

Hence upon integrating over  with respect to µ*N(.* ,z(n)) and noting that µ*N and µiN have the same

marginal over i, we may conclude that 

     2I     (fz(n)( , ))dµ*N(.* ,z(n))  -  I      (fi
z(n)( i, i))dµiN(.* i,z(n))2  #   +  µ*N( N(i, ,n)c * ,z(n)). (39)

                                                      i                                                                                                                                          

Suppose that gN obeys the KL93 conclusion.  Then 1 = µ*N( NKL) = µ*N(1i I 1 >0 c
4

N=1 1n$N N(i, ,n)).  This

implies that for each i and  > 0 , µ*N( N(i, ,n)) 6 1 as n 6 4.  So from (39) we conclude that 

µ*N(1i I 1 >0c
4

N=1 1n$N {2 I    (fz(n)( , ))dµ*N(.* ,z(n))  -  I    (fi
z(n)( i, i)) dµiN(.* i,z(n))2 #   }) = 1. (40)

                                                                                                              i

This is precisely the statement that g obeys the KL93 conclusion.  �
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Proof of Proposition 6.9:   (a)  From Proposition 6.1 and Lemma 6.2  we know that optimization and

EPLAC obey TIGER.  The required monotonicity therefore follows from the monotonicity result of

Lemma 6.3.  (b)   The statement in (b) is the counter-positive of (a).  �

Proof of Lemma 6.2: Fix any g= < ,{µ i} i I,µ
*> and gN=< N,{µ Ni} i I,µ

*N> in G and suppose that gN ë g.

Let  (respectively (, )) denote a generic type vector in g (resp. gN).  We continue the proof in two steps,

(a) and (b) below.  Applying Proposition 5.2 then proves this lemma.

 (a)  If  gN satisfies EPLAC then so too does g:   Suppose gN satisfies EPLAC.  Fix any hH and T

and suppose that (f( ))(C(h))>0.  Then there exists a set of 's with µ*N-positive probability such that

(f( , ))(C(h))>0.  Since gN satisfies EPLAC, this implies that  (fi( i , i))(C(h))>0, for a set of i's with

µ*N- positive probability.  Integrating out the i's implies that (fi ( i ))(C(h)) > 0.  So g satisfies EPLAC.

(b) If g satisfies EPLAC then so too does gN:   It is easy to see EPLAC holds in any game  gN  if for

that game for µ*N almost every  (, )=( i, -i, i, -i), for each n=0,1,2, ..., and for each history h of length n

that occurs with µ*N(.* , ) positive probability,

 

f( , )(h)({zn+1=
^a}) >0   implies   fi ( i, i)(h)({zn+1=

^a}) > 0     é^a in A. (41)

So fix any such n, h and ^a=(^ai,
^a-i) A.  Suppose that the first inequality of (41) holds for a set of (, )'s

with positive µ*N probability.  Since f(, )(h)({zn+1=
^a}) = [fi( i, i)(h)({zi,n+1=

^ai})] .[f -i( -i, -i)(h)({z-i,n+1=
^a-i})],

this implies that 

fi( i, i)(h)({zi,n+1=
^ai}) >0 .      (42)

Next, integrating the first inequality of (41) over  implies that f()(h)({zn+1=
^a})  > 0, so if g satisfies

EPLAC then fi( i )(h)({zn+1=
^a}) > 0, and in particular  fi( i)(h)({z-i,n+1=

^a-i}) >0.  Since i's beliefs about j are

independent of i's type, this implies that fi( i, i)(h)({z-i,n+1=
^a-i }) >0.  Combining this with (42) implies the

right hand side of (41) .  So gN obeys EPLAC.�

Proof of Lemma 6.3:  The proof is almost identical to the proof of Proposition 6.7 so is omitted.  �
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